login
Decimal expansion of first zero of BesselJ(1,z).
18

%I #23 Aug 06 2022 22:02:28

%S 3,8,3,1,7,0,5,9,7,0,2,0,7,5,1,2,3,1,5,6,1,4,4,3,5,8,8,6,3,0,8,1,6,0,

%T 7,6,6,5,6,4,5,4,5,2,7,4,2,8,7,8,0,1,9,2,8,7,6,2,2,9,8,9,8,9,9,1,8,8,

%U 3,9,3,0,9,5,1,9,0,1,1,4,7,0,2,1,4,1,1,2,8,7,4,7,5,7,4,2,3,1,2,6,7,2,4,4,7

%N Decimal expansion of first zero of BesselJ(1,z).

%C Also the first root of the sinc(2,x) function, that is, the radial component of the 2D Fourier transform of a 2-dimensional unit disc. - _Stanislav Sykora_, Nov 14 2013

%C Also the first root of the derivative of BesselJ_0. - _Jean-François Alcover_, Jul 01 2015

%H Stanislav Sykora, <a href="http://dx.doi.org/10.3247/SL2Math07.002">K-Space Images of n-Dimensional Spheres and Generalized Sinc Functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BesselFunctionZeros.html">Bessel Function Zeros</a>

%e 3.8317059702075123156...

%t BesselJZero[1, 1] // N[#, 105]& // RealDigits // First (* _Jean-François Alcover_, Feb 06 2013 *)

%o (PARI) solve(x=3,4,besselj(1,x)) \\ _Charles R Greathouse IV_, Feb 19 2014

%o (PARI) besseljzero(1) \\ _Charles R Greathouse IV_, Aug 06 2022

%Y Cf. A115368, A115370, A115371, A115372, A115373.

%Y Cf. A103365, A238390, A180874.

%K nonn,cons

%O 1,1

%A _Eric W. Weisstein_, Jan 21 2006