%I
%S 0,0,0,0,4,1,5,2,7,7,7,6,7,7,13,13,8,11,13,14,19,19,14,15,13,23,23,23,
%T 20,21,16,25,28,27,21,32,24,29,30,31,24,32,34,33,38,37,29,35,34,43,41,
%U 43,38,43,35,47,46,49,44,44,35,54,52,52,49,52,42,55,56,55,56,57,54,59
%N a(0)=0. a(n) = number of earlier terms of the sequence which when added to n produce a composite number.
%H G. C. Greubel, <a href="/A115210/b115210.txt">Table of n, a(n) for n = 0..10000</a>
%e Adding 6 to the first 6 terms (terms 0 through 5) of the sequence gives [6,6,6,6,10,7]. Of these terms, five are composite, so a(6) = 5.
%t a = {0, 0, 0, 0}; For[n = 4, n < 10001, n++, in = 0; For[j = 1, j < Length[a] + 1, j++, If[! PrimeQ[n + a[[j]]], in++]]; AppendTo[a, in]];
%t a (* _G. C. Greubel_, Feb 05 2016 *)
%o (PARI) seq=vector(200);print1(0,",");for(j=1,190,count=0;for(k=0,j1,if(isprime(j+seq[k+1])==0 && (j+seq[k+1])>1,count=count+1;));seq[j+1]=count;print1(seq[j+1],",")) \\ _Matthew Conroy_, Feb 07 2006
%Y Cf. A115207, A115208, A115209.
%K nonn
%O 0,5
%A _Leroy Quet_, Jan 16 2006
%E More terms from _Matthew Conroy_, Feb 07 2006
