|
|
A114964
|
|
a(n) = n^2 + 30.
|
|
6
|
|
|
30, 31, 34, 39, 46, 55, 66, 79, 94, 111, 130, 151, 174, 199, 226, 255, 286, 319, 354, 391, 430, 471, 514, 559, 606, 655, 706, 759, 814, 871, 930, 991, 1054, 1119, 1186, 1255, 1326, 1399, 1474, 1551, 1630, 1711, 1794, 1879, 1966, 2055, 2146, 2239, 2334, 2431
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
x^2 + 30 != y^n for all x,y and n > 1, so this is a subsequence of A007916.
From Bruno Berselli, May 12 2014: (Start)
This is the case k=5 of the identity n^2 + k*(k+1) = ( Sum_{i=-k..k} (n+i)^3 ) / ( (2*k+1)*n ). Similar sequences:
k=1, A059100;
k=2, A114949;
k=3, A241748;
k=4, A241850. (End)
The old name of this sequence was: Numbers of the form x^2 + 30. Also numbers that are not a perfect power.
|
|
LINKS
|
Shawn A. Broyles, Table of n, a(n) for n = 0..1000
J. H. E. Cohn, The diophantine equation x^2 + C = y^n, Acta Arithmetica LXV.4 (1993).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
11*4*a(4) = (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 = 2024. - Bruno Berselli, May 12 2014
|
|
PROG
|
(PARI) g(n, p) = for(x=0, n, y=x^2+p; print1(y", "));
(PARI) a(n) = n^2 + 30; \\ Altug Alkan, Apr 30 2018
|
|
CROSSREFS
|
Cf. A007916, A059100, A114949, A241748, A241850.
Sequence in context: A165851 A162503 A003896 * A267747 A022400 A042812
Adjacent sequences: A114961 A114962 A114963 * A114965 A114966 A114967
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Cino Hilliard, Feb 21 2006
|
|
EXTENSIONS
|
New name from Shawn A. Broyles and Altug Alkan, Apr 30 2018
|
|
STATUS
|
approved
|
|
|
|