%I #30 May 05 2024 19:19:00
%S 6,15,16,21,25,33,35,37,38,39,46,49,51,58,62,65,67,82,86,103,106,119,
%T 122,139,142,145,158,166,179,181,226,233,235,241,257,263,274,281,299,
%U 301,317,337,383,389,419,457,463,473,479,491,521,541,557,619,643,659
%N Indices of Fibonacci numbers with 3 prime factors when counted with multiplicity.
%C 1811, 1933, 1997, 2069, 2087, 2203, 2221, 2311, 2663, 2713, 3631, 4157, 4651, 5107, 6701, 7211, 8123 are also terms (from data in Kelly link). - _Chai Wah Wu_, Nov 11 2019
%H Amiram Eldar, <a href="/A114812/b114812.txt">Table of n, a(n) for n = 1..83</a>
%H Blair Kelly, <a href="http://mersennus.net/fibonacci/">Fibonacci and Lucas Factorizations</a>.
%F {n: A038575(n)=3}. [_R. J. Mathar_, Jun 08 2010]
%e a(2)=15 because 15th Fibonacci number (i.e., 610) consists of 3 prime factors (i.e., 2*5*61).
%t t = {}; Do[f = FactorInteger[Fibonacci[n]]; If[Total[Transpose[f][[2]]] == 3, AppendTo[t, n]], {n, 2, 100}]; t (* _T. D. Noe_, Mar 14 2014 *)
%t Flatten[Position[Fibonacci[Range[700]],_?(PrimeOmega[#]==3&)]] (* _Harvey P. Dale_, Feb 15 2015 *)
%o (PARI) n=1;while(n<340,if(bigomega(fibonacci(n))==3,print1(n,", "));n++)
%Y Cf. A072381, A114813.
%Y Column k=3 of A303215.
%K nonn
%O 1,1
%A _Shyam Sunder Gupta_, Feb 19 2006
%E More terms from _Ryan Propper_, May 22 2006