login
Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^5](n-1,k-1) + [T^5](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^5 is the matrix 5th power of T.
13

%I #6 Mar 13 2015 22:31:56

%S 1,1,1,5,6,1,85,115,31,1,4985,7420,2590,156,1,1082905,1744965,723370,

%T 62090,781,1,930005021,1601759426,752616215,82390620,1532715,3906,1,

%U 3306859233805,6024941167511,3117415999361,409321203715,10025307495

%N Triangle T, read by rows, that satisfies the recurrence: T(n,k) = [T^5](n-1,k-1) + [T^5](n-1,k) for n>k>=0, with T(n,n)=1 for n>=0, where T^5 is the matrix 5th power of T.

%C Column 0 of the matrix power p, T^p, equals the number of 5-tournament sequences having initial term p (see A113103 for definitions).

%F Let GF[T] denote the g.f. of triangular matrix T. Then GF[T] = 1 + x*(1+y)*GF[T^5] and for all integer p>=1: GF[T^p] = 1 + x*Sum_{j=1..p} GF[T^(p+4*j)] + x*y*GF[T^(5*p)].

%e Triangle begins:

%e 1;

%e 1,1;

%e 5,6,1;

%e 85,115,31,1;

%e 4985,7420,2590,156,1;

%e 1082905,1744965,723370,62090,781,1;

%e 930005021,1601759426,752616215,82390620,1532715,3906,1;

%e Matrix 4th power T^4 (A113112) begins:

%e 1;

%e 4,1;

%e 56,24,1;

%e 2704,1576,124,1;

%e 481376,346624,39376,624,1; ...

%e where column 0 equals A113113.

%e Matrix 5th power T^5 (A113114) begins:

%e 1;

%e 5,1;

%e 85,30,1;

%e 4985,2435,155,1;

%e 1082905,662060,61310,780,1;

%e 930005021,671754405,80861810,1528810,3905,1; ...

%e where adjacent sums in row n of T^5 forms row n+1 of T.

%o (PARI) {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^5)[r-1,c-1])+(M^5)[r-1,c]))); return(M[n+1,k+1])}

%Y Cf. A097710, A113084, A113095; A113103, A113107 (column 0), A113108 (T^2), A113110 (T^3), A113112 (T^4), A113112 (T^5).

%K nonn,tabl

%O 0,4

%A _Paul D. Hanna_, Oct 14 2005