login
Triangle T, read by rows, equal to the matrix square of triangle A113095, which satisfies the recurrence: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).
2

%I #3 Mar 30 2012 18:36:51

%S 1,2,1,13,10,1,242,237,42,1,13228,15296,3741,170,1,2241527,2930006,

%T 893528,58909,682,1,1237069018,1775967132,637702746,54501208,935709,

%U 2730,1,2305369985312,3563503353790,1451785389252,151058838746

%N Triangle T, read by rows, equal to the matrix square of triangle A113095, which satisfies the recurrence: A113095(n,k) = [A113095^4](n-1,k-1) + [A113095^4](n-1,k).

%e Triangle begins:

%e 1;

%e 2,1;

%e 13,10,1;

%e 242,237,42,1;

%e 13228,15296,3741,170,1;

%e 2241527,2930006,893528,58909,682,1;

%e 1237069018,1775967132,637702746,54501208,935709,2730,1; ...

%o (PARI) {T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^4)[r-1,c-1])+(M^4)[r-1,c]))); return((M^2)[n+1,k+1])}

%Y Cf. A113098 (column 0), A113095, A113099.

%K nonn,tabl

%O 0,2

%A _Paul D. Hanna_, Oct 14 2005