$$
\binom{p n}{n} /((p-1) n+1) \bmod p
$$

Robert Israel
June 11, 2018

Theorem 1 If p is prime, $\binom{p n}{n} /((p-1) n+1) \equiv 1 \bmod p$ if $n=\left(p^{k}-1\right) /(p-1)$ for some k, and $\equiv 0 \bmod p$ otherwise.

Proof After checking the case $n=0$, consider the case $n \not \equiv 1 \bmod p$. Then $(p-1) n+1$ is invertible $\bmod p$, and it suffices to show that $\binom{p n}{n} \equiv 0 \bmod p$. Recall Kummer's theorem[1] on binomial coefficients: the p-adic order of $\binom{m}{n}$ is the number of carries when adding n to $m-n$ in base p. If d_{j} is the first nonzero base- p digit of n, the corresponding digit of $p n$ is 0 , so there is a carry in this position of the addition, and thus $\binom{p n}{n} \equiv 0 \bmod p$.

Now consider $n \equiv 1 \bmod p$. Since $(p-1) n+1 \equiv 0 \bmod p$, we use

$$
\binom{p n}{n} /((p-1) n+1)=\frac{(p n)!}{(p-1) n+1)!n!}=\binom{p n}{n-1} / n \equiv\binom{p n}{n-1} \bmod p
$$

Let the base p representation of n be $d_{k} d_{k-1} \ldots d_{1} 1$, where $d_{k} \neq 0$. The representation of $p n$ is then $d_{k} d_{k-1} \ldots d_{1} 10$, and that of $n-1$ is $d_{k} \ldots d_{1} 0$. By Lucas's theorem [2],

$$
\binom{5 n}{n-1} \equiv\binom{1}{d_{1}}\binom{d_{1}}{d_{2}} \ldots\binom{d_{k-1}}{d_{k}}\binom{d_{k}}{0} \bmod p
$$

In order for none of these factors to be 0 , we need $1 \geq d_{1} \geq d_{2} \geq \ldots \geq d_{k} \geq 0$, i.e. all $d_{j}=1$, which makes $n=\sum_{j=0}^{k} p^{j}=\left(p^{k+1}-1\right) /(p-1)$, and in that case all the factors are 1.

References

[1] Wikipedia, "Kumer's theorem", https://en.wikipedia.org/wiki/Kummer's_ theorem
[2] Wikipedia, "Lucas's theorem", https://en.wikipedia.org/wiki/Lucas's_theorem

