$$\binom{pn}{n}/((p-1)n+1) \mod p$$

Robert Israel

June 11, 2018

Theorem 1 If p is prime, $\binom{pn}{n}/((p-1)n+1) \equiv 1 \mod p$ if $n = (p^k - 1)/(p-1)$ for some k, and $\equiv 0 \mod p$ otherwise.

Proof After checking the case n = 0, consider the case $n \not\equiv 1 \mod p$. Then (p-1)n+1 is invertible mod p, and it suffices to show that $\binom{pn}{n} \equiv 0 \mod p$. Recall Kummer's theorem[1] on binomial coefficients: the p-adic order of $\binom{m}{n}$ is the number of carries when adding n to m-n in base p. If d_j is the first nonzero base-p digit of n, the corresponding digit of pn is 0, so there is a carry in this position of the addition, and thus $\binom{pn}{n} \equiv 0 \mod p$.

Now consider $n \equiv 1 \mod p$. Since $(p-1)n + 1 \equiv 0 \mod p$, we use

$$\binom{pn}{n}/((p-1)n+1) = \frac{(pn)!}{(p-1)n+1)! \ n!} = \binom{pn}{n-1}/n \equiv \binom{pn}{n-1} \mod p$$

Let the base p representation of n be $d_k d_{k-1} \dots d_1 1$, where $d_k \neq 0$. The representation of pn is then $d_k d_{k-1} \dots d_1 10$, and that of n-1 is $d_k \dots d_1 0$. By Lucas's theorem[2],

$$\binom{5n}{n-1} \equiv \binom{1}{d_1} \binom{d_1}{d_2} \dots \binom{d_{k-1}}{d_k} \binom{d_k}{0} \mod p$$

In order for none of these factors to be 0, we need $1 \ge d_1 \ge d_2 \ge \ldots \ge d_k \ge 0$, i.e. all $d_j = 1$, which makes $n = \sum_{j=0}^k p^j = (p^{k+1}-1)/(p-1)$, and in that case all the factors are 1.

References

- [1] Wikipedia, "Kumer's theorem", https://en.wikipedia.org/wiki/Kummer's_ theorem
- [2] Wikipedia, "Lucas's theorem", https://en.wikipedia.org/wiki/Lucas's_theorem