login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113047
a(n) = C(3n,n)/(2n+1) mod 3.
5
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
a(n) differs from 0 only when n=(3^j-1)/2, j>=0. [Conjecture confirmed by Kevin Ryde, Jun 23 2021; see links]
Characteristic function of the ternary repunits, a(n) = 1 iff n is a ternary repunit (A003462). - Kevin Ryde, Jun 23 2021
FORMULA
G.f.: A(x) satisfies A(x)=1+x*A(x^3). - Vladimir Kruchinin, Mar 24 2015
a(n) = A001764(n) mod 3. - Michel Marcus, Mar 24 2015
a(n) = floor(log_3(2*n + 1)) - floor(log_3(2*n - 1)), for n>=1. - Ridouane Oudra, Aug 24 2021
MATHEMATICA
Table[Mod[Binomial[3 n, n]/(2 n + 1), 3], {n, 0, 72}] (* Michael De Vlieger, Mar 24 2015 *)
PROG
(PARI) A113047(n) = ((binomial(3*n, n)/(n+n+1))%3); \\ Antti Karttunen, Aug 28 2017
(PARI) a(n) = while(n, my(r); [n, r]=divrem(n, 3); if(r!=1, return(0))); 1; \\ Kevin Ryde, Jun 23 2021
CROSSREFS
Cf. A001764, A003462 (indices of 1's), A010872, A039969.
Sequence in context: A015024 A016039 A138149 * A214505 A127692 A014305
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 11 2005
EXTENSIONS
More terms from Antti Karttunen, Aug 28 2017
STATUS
approved