OFFSET
0,1
COMMENTS
a(n) differs from 0 only when n=(3^j-1)/2, j>=0. [Conjecture confirmed by Kevin Ryde, Jun 23 2021; see links]
Characteristic function of the ternary repunits, a(n) = 1 iff n is a ternary repunit (A003462). - Kevin Ryde, Jun 23 2021
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..29524
FORMULA
G.f.: A(x) satisfies A(x)=1+x*A(x^3). - Vladimir Kruchinin, Mar 24 2015
a(n) = A001764(n) mod 3. - Michel Marcus, Mar 24 2015
a(n) = floor(log_3(2*n + 1)) - floor(log_3(2*n - 1)), for n>=1. - Ridouane Oudra, Aug 24 2021
MATHEMATICA
Table[Mod[Binomial[3 n, n]/(2 n + 1), 3], {n, 0, 72}] (* Michael De Vlieger, Mar 24 2015 *)
PROG
(PARI) A113047(n) = ((binomial(3*n, n)/(n+n+1))%3); \\ Antti Karttunen, Aug 28 2017
(PARI) a(n) = while(n, my(r); [n, r]=divrem(n, 3); if(r!=1, return(0))); 1; \\ Kevin Ryde, Jun 23 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 11 2005
EXTENSIONS
More terms from Antti Karttunen, Aug 28 2017
STATUS
approved