login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112931 Numerator of rational values arising in an asymptotic formula for 1/(zeta(s)-1) as s-->infinity. 2

%I

%S 2,4,1,8,4,2,16,4,8,4,2,32,8,4,16,8,4,8,2,4,64,16,8,32,4,8,2,16,4,8,

%T 16,4,2,8,128,4,32,8,16,4,64,8,2,16,4,8,32,8,4,16,2,32,4,16,8,8,4,16

%N Numerator of rational values arising in an asymptotic formula for 1/(zeta(s)-1) as s-->infinity.

%H Andrei Vieru, <a href="http://arxiv.org/abs/1306.0496">Euler constant as a renormalized value of Riemann zeta function at its pole. Rationals related to Dirichlet L-functions</a>, arXiv:1306.0496 [math.GM], 2015.

%e 1/(zeta(s)-1)=2^s-(4/3)^s-1+(8/9)^s-(4/5)^s+(2/3)^s-(16/27)^s-(4/7)^s+2*(8/15)^s-2*(4/9)^s+(2/5)^s+(32/81)^s+2*(8/21)^s-(4/11)^s-3*(16/45)^s+o((16/45)^x) and here sequence consists of numerators of 2/1,4/3,1/1,8/9,4/5,...

%t nmax = 20; lz = ConstantArray[0, nmax]; ax = 0; Do[le = Exp[Limit[Log[Abs[(1/(Zeta[x] - 1) - ax)]]/x, x -> Infinity]]; ls = Limit[(1/(Zeta[x] - 1) - ax)/le^x, x -> Infinity]; ax = ax + ls*le^x; lz[[j]] = le;, {j, 1, nmax}]; Numerator[lz] (* _Vaclav Kotesovec_, Aug 11 2019 *)

%Y Cf. A112932, A112933.

%K frac,more,nonn

%O 0,1

%A _Benoit Cloitre_, Oct 06 2005

%E a(15)-a(33) computed by Andrei Vieru, added by _Vaclav Kotesovec_, Aug 11 2019

%E Terms a(34) and beyond from _Vaclav Kotesovec_, Aug 11 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 15:16 EDT 2021. Contains 345049 sequences. (Running on oeis4.)