login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112918 Number of nonisomorphic connected H-graphs H(n:i,j;k,m) on 6n vertices (or nodes) for 1<=i,j,k,m<n/2. 2

%I #10 May 22 2024 15:14:40

%S 1,1,4,5,7,12,18,27,24,69,41,70,111,103,87,202,115,275,268,284,201,

%T 583,313,482,459,708,403,1347

%N Number of nonisomorphic connected H-graphs H(n:i,j;k,m) on 6n vertices (or nodes) for 1<=i,j,k,m<n/2.

%C An H-graph H(n:i,j;k,m) has 6n vertices arranged in six segments of n vertices. Let the vertices be v_{x,y} for x=0,1,2,3,4,5 and y in the integers modulo n. The edges are v_{0,y}v_{1,y}, v_{0,y}v_{2,y}, v_{0,y}v_{3,y}, v_{1,y}v_{4,y}, v_{1,y}v_{5,y} (inner edges) and v_{2,y}v_{2,y+i}, v_{3,y}v_{3,y+j}, v_{4,y}v_{3,y+k}, v_{5,y}v_{5,y+m} (outer edges) where y=0,1,...,n-1 and subscript addition is performed modulo n. H-graph H(n:i,j;k,m) is connected if and only if gcd(n,i,j,k,m) = 1.

%D I. Z. Bouwer, W. W. Chernoff, B. Monson, and Z. Starr (Editors), "Foster's Census", Charles Babbage Research Centre, Winnipeg, 1988.

%H J. D. Horton and I. Z. Bouwer, <a href="https://doi.org/10.1016/0095-8956(91)90057-Q">Symmetric Y-graphs and H-graphs</a>, J. Comb. Theory B 53 (1991) 114-129.

%e The only connected symmetric H-graphs are H(17:1,4;2,8) and H(34:1,13;9,15) which are also listed in Foster's Census.

%Y Cf. A112917, A112919, A112920.

%K nonn,more

%O 3,3

%A Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), _Tomaz Pisanski_ and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), Oct 06 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 01:04 EDT 2024. Contains 375769 sequences. (Running on oeis4.)