login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112806 Expansion of solution of functional equation. 2

%I

%S 1,1,2,6,21,79,312,1277,5369,23049,100612,445214,1992606,9004260,

%T 41025315,188259072,869305315,4036286518,18832973733,88259024068,

%U 415252542641,1960718710035,9288106921038,44129146527731

%N Expansion of solution of functional equation.

%H Gi-Sang Cheon, S.-T. Jin, L. W. Shapiro, <a href="http://dx.doi.org/10.1016/j.laa.2015.03.015">A combinatorial equivalence relation for formal power series</a>, Linear Algebra and its Applications, Available online 30 March 2015.

%F Given g.f. A(x), then series reversion of B(x)=x*A(x^3) is -B(-x).

%F Given g.f. A(x), then y=x*A(x^3) satisfies y=x+(xy)^2/(1-(xy)^3).

%F G.f. satisfies: A(x) = 1 + x*A(x)^2/(1 - x^2*A(x)^3). - _Paul D. Hanna_, Jun 06 2012

%F G.f. satisfies: A(x) = 1/A(-x*A(x)^3); note that the Catalan function C(x) = 1 + x*C(x)^2 (A000108) also satisfies this condition. - _Paul D. Hanna_, Jun 06 2012

%F a(n) = Sum_{i=0..n/2}((binomial(n+2*i+1,i)*Sum_{k=0..n-2*i}(binomial(k,n-k-2*i)*(-1)^(n-k)*binomial(n+k+2*i,k)))/(n+2*i+1)). - _Vladimir Kruchinin_, Mar 07 2016

%o (PARI) {a(n)=local(A); if(n<0, 0, A=x+O(x^4); for(k=1,n, A=x+subst(x^2/(1-x^3),x,x*A)); polcoeff(A,3*n+1))}

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*A^2/(1-x^2*A^3));polcoeff(A,n)} \\ _Paul D. Hanna_, Jun 06 2012

%o (Maxima)

%o a(n):=sum((binomial(n+2*i+1,i)*sum(binomial(k,n-k-2*i)*(-1)^(n-k)*binomial(n+k+2*i,k),k,0,n-2*i))/(n+2*i+1),i,0,n/2); /* _Vladimir Kruchinin_, Mar 07 2016 */

%Y Cf. A004148, A216490.

%K nonn

%O 0,3

%A _Michael Somos_, Sep 20 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 07:00 EDT 2021. Contains 345395 sequences. (Running on oeis4.)