Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Apr 16 2019 21:43:55
%S 1,2,3,5,7,11,14,21,28,39,50,69,87,115,146,189,235,302,371,469,575,
%T 714,867,1072,1292,1577,1894,2293,2734,3293,3902,4664,5511,6542,7690,
%U 9094,10638,12507,14588,17073,19830,23121,26757,31066,35860,41469,47701
%N Number of partitions of n into 5-smooth parts.
%H Robert Israel, <a href="/A112581/b112581.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PartitionFunctionP.html">Partition Function P</a>
%F G.f.: Product_{a>=0} Product_{b>=0} Product_{c>=0} 1/(1-x^(2^a*3^b*5^c)). - _Robert Israel_, Apr 16 2019
%p N:= 100:
%p P:= select(t -> max(numtheory:-factorset(t))<=5, [$1..N]):
%p S:= series(mul(1/(1-q^k),k=P),q,N+1):
%p seq(coeff(S,q,k),k=1..N); # _Robert Israel_, Apr 16 2019
%Y Cf. A000041, A051037, A105420, A112582.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Sep 14 2005