login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Zero-free semiprimes.
1

%I #18 Nov 05 2023 09:02:05

%S 4,6,9,14,15,21,22,25,26,33,34,35,38,39,46,49,51,55,57,58,62,65,69,74,

%T 77,82,85,86,87,91,93,94,95,111,115,118,119,121,122,123,129,133,134,

%U 141,142,143,145,146,155,158,159,161,166,169,177,178,183,185,187

%N Zero-free semiprimes.

%C Intersection of A001358 and A052382. - _Michel Marcus_, Oct 09 2013

%e 74 is in the sequence because it is a semiprime (2*37) and does not have 0 in digits. - _Michel Marcus_, Oct 14 2013

%t SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; Select[Range[2, 200], SemiPrimeQ[#] && Min[IntegerDigits[#]] > 0 &] (* _T. D. Noe_, Oct 11 2013 *)

%o (PARI) lista(nn) = {vec = vector(nn, i, i); pp = select(i->(((bigomega(i) == 2) && vecmin(digits(i)))), vec); print(pp);} \\ _Michel Marcus_, Oct 09 2013

%K base,nonn

%O 1,1

%A _Zak Seidov_, May 30 2006

%E Data corrected by _Michel Marcus_, Oct 14 2013