%I #9 Aug 15 2019 07:27:41
%S 2,22,25,28,37,40,60,73,78,80,129,135,158,162,215,220,228,238,269,285,
%T 315,332,344,347,355,365,366,390,397,402,439,443,470,477,533,549,653,
%U 694,710,715,716,745,765,782,822
%N Numbers n such that P(3*n + 1) has exactly two distinct prime factors, where P(m) is the partition number A000041.
%e If n=2 then P(3*n + 1) = 15 = 3 x 5 (two distinct prime factors), so the first term is 2.
%p with(combinat): with(numtheory): a:=proc(n) if nops(factorset(numbpart(3*n+1)))=2 then n else fi end: seq(a(n),n=1..300); # _Emeric Deutsch_, Jan 27 2006
%t For[n = 1, n < 550, n++, If[Length[FactorInteger[PartitionsP[3*n + 1]]] == 2, Print[n]]] (* _Stefan Steinerberger_, Jan 27 2006 *)
%Y Cf. A000041.
%K nonn
%O 1,1
%A _Parthasarathy Nambi_, Nov 19 2005
%E More terms from _Stefan Steinerberger_ and _Emeric Deutsch_, Jan 27 2006
%E More terms from _Emeric Deutsch_, Jan 30 2006