%I #9 Dec 08 2015 08:56:53
%S 1,1,1,3,1,6,1,7,1,3,1,6,1,3,12,3,1,6,1,11,18,3,1,24,1,3,1,8,1,21,1,
%T 11,20,20,23,16,1,22,34,21,1,14,1,22,24,26,1,2,1,43,6,26,1,33,17,46,
%U 43,32,1,25,1,34,47,35,63,25,1,8,49,31,1,48,1,40,32,73,21,58,1,80,28,44,1,29
%N First upper diagonal of array in A109626.
%C a(1) = a(2) = 1 and a(p^e) = 1 for odd primes p and noncomposite exponents e.
%C a(81) = 28 and not 1 because 9^2 = 81.
%t f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 128}]]; g[n_, m_] := f[n][[m]]; Table[ g[n, n + 1], {n, 84}]
%Y Cf. A109626.
%K nonn
%O 1,4
%A _Paul D. Hanna_ and _Robert G. Wilson v_, Jul 30 2005