%I #9 Sep 04 2014 08:01:38
%S 1,1,1,1,2,1,3,1,4,9,13,9,22,9,31,71,102,71,173,71,244,559,803,559,
%T 1362,3283,11211,25705,36916,25705,62621,25705,88326,202357,695397,
%U 1593151,2288548,1593151,3881699,9356549,13238248,9356549,22594797,9356549
%N Sequence of denominators associated with the continued fraction based on the sequence d(n)= distance of n from closest prime ( A051699).
%D G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 110.
%F See program.
%e if n = 2, B(n) = B(2) = 1 because B(0) = 1, B(1) = 1 * B(0) = 1 as the distances of n from closest prime are 2, 1, 0, 0, 1 ...
%p A[0]:=d[0]; A[1]:=d[1]*A[0]+1; B[0]:=1; B[1]:=d[1]*B[0]; for n from 2 by 1 to N do A[n]:=d[n]*A[n-1]+A[n-2]; B[n]:=d[n]*B[n-1]+B[n-2]; od;
%Y Cf. A051699, A109139, A109140, A110976.
%K frac,nonn
%O 0,5
%A _Giorgio Balzarotti_ and _Paolo P. Lava_, Sep 28 2005