login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110654 a(n) = ceiling(n/2), or: a(2*k) = k, a(2*k+1) = k+1. 54

%I

%S 0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,

%T 15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,

%U 26,27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,38

%N a(n) = ceiling(n/2), or: a(2*k) = k, a(2*k+1) = k+1.

%C The number of partitions of 2n into exactly 2 odd parts. - _Wesley Ivan Hurt_, Jun 01 2013

%C Number of nonisomorphic outer planar graphs of order n >= 3 and size n+1. - _Christian Barrientos_ and _Sarah Minion_, Feb 27 2018

%C Also the clique covering number of the n-dipyramidal graph for n >= 3. - _Eric W. Weisstein_, Jun 27 2018

%H Charles R Greathouse IV, <a href="/A110654/b110654.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CliqueCoveringNumber.html">Clique Covering Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DipyramidalGraph.html">Dipyramidal Graph</a>

%H Wikipedia, The Free Encyclopedia <a href="http://en.wikipedia.org/w/index.php?title=Floor_and_ceiling_functions&amp;oldid=612815598">Floor and ceiling functions</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = floor(n/2) + n mod 2.

%F a(n) = A004526(n+1) = A001057(n)*(-1)^(n+1).

%F For n > 0: a(n) = A008619(n-1).

%F A110655(n) = a(a(n)), A110656(n) = a(a(a(n))).

%F a(n) = A109613(n) - A028242(n) = A110660(n) / A028242(n).

%F a(n) = A001222(A029744(n)). - _Reinhard Zumkeller_, Feb 16 2006

%F a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2, a(2) = a(1) = 1, a(0) = 0. - _Reinhard Zumkeller_, May 22 2006

%F First differences of quarter-squares: a(n) = A002620(n+1) - A002620(n). - _Reinhard Zumkeller_, Aug 06 2009

%F a(n) = A007742(n) - A173511(n). - _Reinhard Zumkeller_, Feb 20 2010

%F a(n) = A000217(n) / A008619(n). - _Reinhard Zumkeller_, Aug 24 2011

%F From _Michael Somos_, Sep 19 2006: (Start)

%F Euler transform of length 2 sequence [1, 1].

%F G.f.: x/((1-x)*(1-x^2)).

%F a(-1-n) = -a(n). (End)

%F a(n) = floor((n+1)/2) = |Sum_{m=1..n} Sum_{k=1..m} (-1)^k|, where |x| is the absolute value of x. - _William A. Tedeschi_, Mar 21 2008

%F a(n) = A065033(n) for n > 0. - _R. J. Mathar_, Aug 18 2008

%F a(n) = 1/4 - (-1)^n/4 + n/2. - _Paolo P. Lava_, Oct 03 2008

%F a(n) = ceiling(n/2) = smallest integer >= n/2. - _M. F. Hasler_, Nov 17 2008

%F If n is zero then a(n) is zero, else a(n) = a(n-1) + (n mod 2). - _R. J. Cano_, Jun 15 2014

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + x) * u * v - (u^2 - v) / 2. - _Michael Somos_, Jun 15 2014

%F Given g.f. A(x) then 2 * x^3 * (1 + x) * A(x) * A(x^2) is the g.f. of A014557. - _Michael Somos_, Jun 15 2014

%F a(n) = (n + (n mod 2)) / 2. - _Fred Daniel Kline_, Jun 08 2016

%F E.g.f.: (sinh(x) + x*exp(x))/2. - _Ilya Gutkovskiy_, Jun 08 2016

%e G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 5*x^9 + ...

%p a:=n->add(chrem( [n,j], [1,2] ),j=1..n):seq(a(n), n=0..75); # _Zerinvary Lajos_, Apr 08 2009

%t a[ n_] := Ceiling[ n / 2]; (* _Michael Somos_, Jun 15 2014 *)

%t a[ n_] := Quotient[ n, 2, -1]; (* _Michael Somos_, Jun 15 2014 *)

%t a[0] = 0; a[n_] := a[n] = n - a[n - 1]; Table[a[n], {n, 0, 100}] (* _Carlos Eduardo Olivieri_, Dec 22 2014 *)

%t CoefficientList[Series[x^/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* _Robert G. Wilson v_, Feb 05 2015 *)

%t LinearRecurrence[{1, 1, -1}, {0, 1, 1}, 75] (* _Robert G. Wilson v_, Feb 05 2015 *)

%o (PARI) a(n)=n\2+n%2;

%o (PARI) a(n)=(n+1)\2; \\ _M. F. Hasler_

%o (Sage) [floor(n/2) + 1 for n in xrange(-1,75)] # _Zerinvary Lajos_, Dec 01 2009

%o (Haskell)

%o a110654 = (`div` 2) . (+ 1)

%o a110654_list = tail a004526_list -- _Reinhard Zumkeller_, Jul 27 2012

%o (MAGMA) [Ceiling(n/2): n in [0..80]]; // _Vincenzo Librandi_, Nov 04 2014

%Y Essentially the same sequence as A008619 and A123108.

%Y Cf. A014557.

%Y Cf. A298648 (number of smallest coverings of dipyramidal graphs by maximal cliques).

%K nonn,easy

%O 0,4

%A _Reinhard Zumkeller_, Aug 05 2005

%E Deleted wrong formula, added formula and better PARI code. - _M. F. Hasler_, Nov 17 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 12:55 EDT 2019. Contains 324352 sequences. (Running on oeis4.)