login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110190 Number of (1,0)-steps on the lines y=0 and y=1 in all Schroeder paths of length 2n (a Schroeder path of length 2n is a path from (0,0) to (2n,0), consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis). 2

%I

%S 0,1,5,24,116,568,2820,14184,72180,371112,1925380,10068728,53023860,

%T 280969560,1497072132,8016213960,43114424308,232817773640,

%U 1261793848836,6861179441880,37421756333172,204671007577464,1122275850740996,6168352091629864,33977333521770996,187539324760522728

%N Number of (1,0)-steps on the lines y=0 and y=1 in all Schroeder paths of length 2n (a Schroeder path of length 2n is a path from (0,0) to (2n,0), consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis).

%C a(n) = sum(k*A110189(n,k), k=0..n).

%H Vincenzo Librandi, <a href="/A110190/b110190.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: x*(1-x-2*x*R+x^2+2*x^2*R+x^2*R^2)/(1-3*x-x*R+x^2+x^2*R)^2, where R = 1+x*R+x*R^2 = (1-x-sqrt(1-6*x+x^2))/(2*x) is the g.f. for the large Schroeder numbers (A006318).

%F Recurrence: (n+2)*(n+3)*a(n) = (5*n^2+29*n+10)*a(n-1) + (5*n^2-59*n+142)*a(n-2) - (n-6)*(n-5)*a(n-3). - _Vaclav Kotesovec_, Oct 18 2012

%F a(n) ~ 3*2^(1/4)*(3+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 18 2012

%F G.f. A(x) satisfies x^2*A(x)^2 = (x^4 - 7*x^3 + 12*x^2 - 7*x + 1)*A(x) + (-x^3 + 2*x^2 - x). [_Joerg Arndt_, May 16 2013]

%F a(n) = Sum_{k=0..n} ((k+1)*Sum_{i=0..n-k} (binomial(n+1,n-k-i)*binomial(n+i,n))/ (n+1)*a113127(k)). - _Vladimir Kruchinin_, Mar 13 2016

%e a(2)=5 because in the 6 (=A006318(2)) Schroeder paths of length 4, namely, HH, HUD, UDH, UDUD, UHD, UUDD, all 5 H-steps are at levels 0 or 1.

%p R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*(1-z-2*z*R+z^2+2*z^2*R+z^2*R^2)/(1-3*z-z*R+z^2+z^2*R)^2: Gser:=series(G,z=0,30): 0,seq(coeff(Gser,z^n),n=1..26);

%t CoefficientList[Series[x*(1-x-2*x*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2+2*x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x))^2)/(1-3*x-x*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2+x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x)))^2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 18 2012 *)

%o (PARI)

%o x = 'x+O('x^66);

%o R = (1-x-sqrt(1-6*x+x^2))/(2*x);

%o gf = x*(1-x-2*x*R+x^2+2*x^2*R+x^2*R^2)/(1-3*x-x*R+x^2+x^2*R)^2;

%o concat([0],Vec(gf))

%o \\ _Joerg Arndt_, May 16 2013

%o (Maxima)

%o a113127(n):=if n=0 then 1 else if n=1 then 3 else 4*n-2;

%o a(n):=sum((k+1)*sum(binomial(n+1,n-k-i)*binomial(n+i,n),i,0,n-k)/(n+1)*a113127(k),k,0,n); /* _Vladimir Kruchinin_, Mar 13 2016 */

%Y Cf. A006318, A110189.

%K nonn

%O 0,3

%A _Emeric Deutsch_, Jul 15 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 22:18 EDT 2021. Contains 343957 sequences. (Running on oeis4.)