login
Riordan array ((1-x^2)/(1+3x+x^2),x/(1+3x+x^2)).
2

%I #7 Jan 22 2014 17:54:00

%S 1,-3,1,7,-6,1,-18,24,-9,1,47,-84,50,-12,1,-123,275,-225,85,-15,1,322,

%T -864,900,-468,129,-18,1,-843,2639,-3339,2219,-840,182,-21,1,2207,

%U -7896,11756,-9528,4610,-1368,244,-24,1,-5778,23256,-39825,38121,-22518,8532,-2079,315,-27,1,15127,-67650,130975

%N Riordan array ((1-x^2)/(1+3x+x^2),x/(1+3x+x^2)).

%C Inverse of A110165. Row sums are 1,-2,2,-2,... with g.f. (1-x)/(1+x). Diagonal sums are (-1)^n*A080923. Product of A110162 and inverse binomial transform (1/(1+x),x/(1+x)).

%F T(n,k) = T(n-1,k-1) - 3*T(n-1,k) - T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = -3, T(2,0) = 7, T(2,1) = -6, T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Jan 22 2014

%e Rows begin

%e 1;

%e -3,1;

%e 7,-6,1;

%e -18,24,-9,1;

%e 47,-84,50,-12,1;

%e -123,275,-225,85,-15,1;

%K easy,sign,tabl

%O 0,2

%A _Paul Barry_, Jul 14 2005