%I #8 Nov 04 2021 13:09:24
%S 0,0,3,4,0,3,7,4,3,10,11,1,13,21,12,12,34,33,0,46,67,33,46,
%T 113,100,13,159,213,87,172,372,300,85,544,672,215,629,1216,
%U 887,414,1845,2103,473,2259,3948,2576,1786,6207,6524,790,7993,12731,7314,7203,20724,20045,111,27927,40769,20156
%N Expansion of x^2*(3+4*x)/(1x^3+x^4).
%C One of several sequences which appear to "spiral outwards" when plotted against each other (see A11006264).
%H Robert Munafo, <a href="http://www.mrob.com/pub/math/seqfloretion.html">Sequences Related to Floretions</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1).
%p seriestolist(series(x^2*(3+4*x)/(1x^3+x^4), x=0,30)); or 4tesseq[A*B] with A = + .5'i + .5'j + .5'k + .5e and B =  .5'i  .25'j + .25'k  .5i'  .25j' + .25k'  .5'ii'  .25'ij'  .25'ik'  .25'ji'  .25'ki'  .5e
%t CoefficientList[Series[x^2(3+4x)/(1x^3+x^4),{x,0,100}],x] (* or *) LinearRecurrence[{0,0,1,1},{0,0,3,4},100] (* _Harvey P. Dale_, Nov 04 2021 *)
%Y Cf. A110062, A110063, A110064.
%K easy,sign
%O 0,3
%A _Creighton Dement_, Jul 10 2005
