%I #8 Jul 13 2013 12:03:21
%S 11,23,29,41,43,47,61,67,83,89,101,113,131,137,139,151,157,173,179,
%T 191,193,197,199,223,227,229,241,263,269,281,283,311,313,317,331,337,
%U 353,359,373,379,397,401,409,421,443,449,461,463,467,487,557,571,577,593
%N Primes such that both the sum of digits and the number of digits are primes.
%C Cf. A046704 Additive primes: sum of digits is a prime, A088136 Primes such that sum of first and last digits is prime.
%H Reinhard Zumkeller, <a href="/A109981/b109981.txt">Table of n, a(n) for n = 1..10000</a>
%H G. Harman, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Harman/harman2.pdf">Counting Primes whose Sum of Digits is Prime</a>, J. Integer Seq., 15 (2012), Article 12.2.2.
%e a(86) = 10037 because both the sum (=11) and number (=5) of digits are primes.
%t Select[Prime[Range[200]], PrimeQ[Length[IntegerDigits[ # ]]]&&PrimeQ[Plus@@IntegerDigits[ # ]]&]
%o (Haskell)
%o a109981 n = a109981_list !! (n-1)
%o a109981_list = filter ((== 1) . a010051' . a055642) a046704_list
%o -- _Reinhard Zumkeller_, Nov 16 2012
%Y Cf. A046704, A088136.
%Y Cf. A010051, A055642.
%K base,nonn
%O 1,1
%A _Zak Seidov_, Jul 06 2005