login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109672 Entries in 3-dimensional solids related to Prouhet-Tarry problem. 6

%I

%S 1,1,1,1,1,1,1,1,2,1,2,2,1,1,1,1,3,1,1,1,1,2,2,1,2,1,1,3,3,1,3,6,3,3,

%T 3,1,1,2,1,1,5,5,1,2,5,2,1,1,1,1,2,5,2,1,5,5,1,1,2,1,1,3,3,3,6,3,1,3,

%U 3,1,1,4,6,4,1,4,12,12,4,6,12,6,4,4,1,1,3,3,1,1,7,12,7,1,3,12

%N Entries in 3-dimensional solids related to Prouhet-Tarry problem.

%C Table of slices [n,k] of solids, read by antidiagonals, each slice [n,k] read by rows.

%C Slice [n,0] gives A046816.

%C Slice [0,k] gives A109649.

%C Slice [n,n] gives A109673.

%F Sum of terms in 2D slice [n, k] is 3^(n+k); example : 1+2+1+1+5+5+1+2+5+2+1+127=3^(2+1) for slice [1, 2].

%e Slice [0,0]:

%e ...1...

%e Slice [0,1]:

%e ... 1 1 ...

%e .... 1 ....

%e Slice [1,0]:

%e .... 1 ....

%e ... 1 1...

%e Slice [0,2]:

%e .. 1 2 1 ...

%e .... 2 2 ...

%e ..... 1 .....

%e Slice [1,1]:

%e ... 1 1 ...

%e .. 1 3 1..

%e ... 1 1 ...

%e Slice [2,0]:

%e ..... 1 .....

%e .... 2 2 ...

%e .. 1 2 1 ...

%e Slice [0,3]:

%e .. 1 3 3 1 ...

%e ... 3 6 3 ....

%e .... 3 3 ......

%e ..... 1 ........

%e Slice [1,2]:

%e ... 1 2 1 ...

%e .. 1 5 5 1 ...

%e ... 2 5 2 ...

%e .... 1 1 ...

%e Slice [2,1]:

%e .... 1 1 ...

%e ... 2 5 2 ...

%e .. 1 5 5 1 ...

%e ... 1 2 1 ...

%e Slice [3,0]:

%e ..... 1 .....

%e .... 3 3 ....

%e ... 3 6 3 ...

%e .. 1 3 3 1 ...

%K nonn,tabf,easy

%O 0,9

%A _Philippe Deléham_, Aug 07 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 02:32 EST 2021. Contains 349590 sequences. (Running on oeis4.)