login
Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0 < k < n: T(n,k) = T(n-1,k-1) + 1 - T(n-1,k-1) mod 2 + T(n-1,k).
2

%I #6 Mar 30 2012 18:50:50

%S 1,1,1,1,2,1,1,3,4,1,1,4,7,6,1,1,5,12,13,8,1,1,6,17,26,21,10,1,1,7,24,

%T 43,48,31,12,1,1,8,31,68,91,80,43,14,1,1,9,40,99,160,171,124,57,16,1,

%U 1,10,49,140,259,332,295,182,73,18,1,1,11,60,189,400,591,628,477

%N Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0 < k < n: T(n,k) = T(n-1,k-1) + 1 - T(n-1,k-1) mod 2 + T(n-1,k).

%C Row sums give A084172, the generalized Jacobsthal numbers;

%C T(n,1) = n for n>0;

%C T(n,2) = A074148(n) for n>1.

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%Y Cf. A007318.

%K nonn,tabl

%O 1,5

%A _Reinhard Zumkeller_, Jun 23 2005