%I #7 Jun 03 2013 14:07:10
%S 15,35,77,221,899,1517,2021,5183,8633,11663,23707,27221,36863,41989,
%T 47053,57599,60491,77837,111547,164009,233273,324899,372091,416021,
%U 471953,522713,568507,608351,665831,680621
%N Products of two successive primes that can be partitioned in sum of three distinct primes which contain the prime divisors.
%C Largest prime of sum of three primes are primes of the form p*q  p  q, where p and q are two successive primes (A096345).
%F a(n) = A096345(n)  A001043(n).
%e a(1) = 15 because 15 = 3+5+7 with 3*5 =15;
%e a(2) = 35 because 35 = 5+7+23 with 5*7=35;
%e a(3) = 77 because 77 = 7+11+59 with 7*11=77;
%e a(4) = 221 because 221= 13+17+191 with 13*17=221
%o (PARI) lista(nn) = {for (n=1, nn, p = prime(n); q = prime(n+1); prd = p*q; if (isprime(prd  p  q), print1(prd, ", ")););} \\ _Michel Marcus_, Jun 03 2013
%Y Cf. A096345.
%K nonn
%O 1,1
%A _Giovanni Teofilatto_, Aug 17 2005
%E More terms from _Michel Marcus_, Jun 03 2013
