login
a(n) = (72 - 258*n + 601*n^2 - 264*n^3 + 33*n^4)/4.
1

%I #10 Apr 25 2024 09:22:18

%S 18,46,94,63,52,358,1476,4099,9118,17622,30898,50431,77904,115198,

%T 164392,227763,307786,407134,528678,675487,850828,1058166,1301164,

%U 1583683,1909782,2283718,2709946,3193119,3738088,4349902,5033808,5795251,6639874,7573518

%N a(n) = (72 - 258*n + 601*n^2 - 264*n^3 + 33*n^4)/4.

%H G. C. Greubel, <a href="/A108642/b108642.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F From _G. C. Greubel_, Oct 18 2023: (Start)

%F G.f.: (18 - 44*x + 44*x^2 - 127*x^3 + 307*x^4)/(1-x)^5.

%F E.g.f.: (1/4)*(72 + 112*x + 40*x^2 - 66*x^3 + 33*x^4)*exp(x). (End)

%t LinearRecurrence[{5,-10,10,-5,1}, {18,46,94,63,52}, 41] (* _G. C. Greubel_, Oct 18 2023 *)

%o (Magma) [(72-258*n+601*n^2-264*n^3+33*n^4)/4: n in [0..40]]; // _G. C. Greubel_, Oct 18 2023

%o (SageMath) [(72-258*n+601*n^2-264*n^3+33*n^4)/4 for n in range(41)] # _G. C. Greubel_, Oct 18 2023

%K nonn,less

%O 0,1

%A Hans en Els Verdonk, (hverdonk32(AT)zonnet.nl), Jul 07 2005