A Multisection of g-Series
Michael Somos 30 Jan 2017
ms639Qgeorgetown.edu
(draft version 34)

1 Introduction to Ramanujan theta functions

Ramanujan used an approach to g-series which is general and is suggestive and
can help to find new results, but somehow seems to be practically unknown. I
have been using it for a few years and decided to give a few examples of how to
apply it in practice. I have tried to keep this as brief as possible and yet contain
enough of the details so that it suggests how to continue in the same direction.
Details are available on request.

There is no precise general definition of g-series that I know of. However,
it is usually an expression involving the variable ¢ and perhaps other variables
in an infinite sum or product. I will give the definition of the most important
g-series which is as fundamental to the theory of ¢-series as the exponential
is to differential calculus. Euler applied g-series to the theory of partitions of
integers. Later, Jacobi introduced g-series as a basis for his theory of theta and
elliptic functions with applications to number theory.

The power series here are given in terms of the variable ¢ instead of the
customary z. Ramanujan himself preferred the use of the plain x, however
there are some connections with elliptic function theory where ¢ = €™ or else
q = e?™% is commonly used. Jacobi introduced g-series in 1829 but did not name
them. By 1867, ¢ was called the “nome” by Ole-Jacob Broch in his book “Traite
Elementaire des Fonctions Elliptiques”. In the theory of ¢-hypergeometric series
q is sometimes called the “base”.

To motivate the definition, recall the simplest converging infinite series which
is the geometric power series, the sum of all nonnegative powers of x summing to
1/(1 — z). We would like a multiplicative analog of this series. One possibility
is to use 1 — x™ as the factors in the infinite product, but starting at n = 1
because 1 — 2% = 1 — 1 = 0 would cause the product to vanish immediately.
Therefore we have the following definition.

Definition 1. The Ramanujan f function is defined by

fa) =1 =q)(1 =) (1 =) (1 —q")...

where |g| < 1 is required for convergence. Often, we use formal power series
and so all we need is that ¢" converges to zero as n goes to infinity. The reason
for the f(—q) instead of the simpler f(q) comes from Ramanujan’s symmetric
two variable theta function which is

Definition 2. The general two variable Ramanujan f function as used in his
notebooks is defined by him using the following series

f(a,b) =1+ (a+b) + (ab)(a® +b?) + (ab)®(a® + b*) + (ab)®(a* + b*) + ...



where |ab| < 1 is required for convergence. The idea behind Ramanujan’s
function is that it is a two-way infinite sum of terms in which the quotient
of consecutive terms is a geometric progression. Thus we have

f(a,b) = ... + @ +a®b + ab® + b+ 1+ a+ a®b + a® + %05 + ...

This can be written with summation notation using an index variable n summing
a(nt1/2pn(n=1)/2 gyer all integer n. Further, and, surprisingly, it has an infinite
product expression as follows

fla,b) = (1+a)(1+b)(1—q)(1+aq)(1+bg)(1 - ¢*)(1+ag*)(1+bg*) (1~ ¢°)...

where ¢ = ab. This is equivalent to Jacobi’s triple product identity, thus f(a,b)
is an example of a g-series that has both infinite sum and infinite product
expressions.

In terms of f(a,b) Ramanujan’s one variable theta function is

f(_Q) = f(_q7 _q2)7
which perhaps explains why Ramanujan used f(—¢) instead of the more obvious

f(q). Since this can be confusing, I will use my own ad hoc notation for this
important function, writing it as

y(q) = f(—q).

Euler used 1/y(q) as the generating function for the sequence of partitions of
non-negative integers. He found a striking pattern to the power series expansion
of y(q) which is

y@)=1-q-+¢+d —¢? =" +¢?+ ...
It appears that each term is a power of ¢ with coefficients plus one or minus
one. The signs appear to alternate with two minus signs followed by two plus
signs and so on.

The pattern of the exponents may not be immediately obvious. Euler found
that they are the generalized pentagonal numbers. To make the pattern even
more obvious we can use the following method. We inflate the exponents by
replacing g by ¢?* and multiply by a factor ¢. The result is

qy(@®) = q — ¢ — ¢ + ¢'2 + g1 — 2% ¢
It appears that each exponent is a square number with the general form of the
exponent being (6k +1)2 where k is any integer including negative integers, and
the coefficient is (—1)¥ . Thus, we can write it as a two-way infinite series

(@) = . — g1 I ) g7 0 08

Returning to y(q) we note that the exponents of ¢ are both even and odd
but do not strictly alternate. They go through a pattern of length eight. The
exponents modulo three go through a pattern of length six and all three residues
occur. The exponents modulo five go through a pattern of length ten and these
results generalize.



2 Bisection, Trisection and Multisection of power
series

This suggests that it might be interesting to split up the power series into parts
depending on the residue of the exponent modulo a fixed modulus. For modulus
two this is called bisection, and in the general case it is called multisection. Note
carefully that there is another closely related version of multisection known as
dissection in which the sections need to be multiplied by powers of the variable
and the argument replaced by the n-th power of the variable in order to become
equal to multisection sections.

It is already interesting to try bisecting known series. For example, bisecting
the exponential power series gives the series for hyperbolic sine and cosine.
The general n-section case is given by Abraham Ungar in a 1982 American
Mathematical Monthly article. Note that there is an algebraic relation between
the hyperbolic sine and cosine and also in Ungar’s general case. Also note that
multisections can be expressed using n-th roots of unity.

For the series A = y(q), applying bisection gives nothing obvious, so we
trisect the series into three others and find that

AO - 1= q12 _ q15 _|_q51 T q57 _ q117 _ q126 + ..,

A= —q+q +¢2— ¢l — 70 4 g0 4 145 _

A2 — _q2+q5+q26_q35_q77+q92+q155 -
A=y(q) = Ao+ A1 + As.

It is natural to look for algebraic relations between Ay, A1, Az, but we need some
algorithmic tools to find them. A few years ago I wrote such tools in PARI-GP.
Frank Garvan’s g¢-series Maple package also has similar tools. We start with
two or more power series and the relation tool can find algebraic relations given
enough terms and computation. While we will usually be finding homogeneous
relations, it is easy to find non-homogeneous relations by supplying 1 as an extra
power series. With Ay, A;, Ao, by using only the coefficients from ¢° up to ¢°,
and assuming there is a homogeneous cubic relation, the tool produces

0= Ay A2+ AgA2 + A A2,

It may be surprising that such a simple and symmetric relation holds, and easily
found, but after finding many hundreds of similar relations it becomes more of
a familiar phenomenon.

The proof of this relation depends on the trisection of y(q)* and leads to a
2007 result by Bruce Berndt and William Hart. Consider the series y(q)* with
power series expansion

A=1-3¢+5¢—7¢°+9¢"° —11¢"° +13¢*' — ...

The striking pattern of alternating odd integer coeflicients and the triangular
number exponents was known to Jacobi and resembles the pattern for y(q) itself.
We trisect the series and find that



Ao =145¢> —7¢% — 11¢" + 13¢** + 17¢%% — 19¢*° — ...,
Ay = =3¢+ 9¢"° — 15¢*® + 21¢°° — ... = —=3qA(¢"),
AQ :O,A:y(q)g :A0+A1 +A2

Notice that Ay is zero and that A is similar to the original power series. We
will encounter situations like this later on. In this case the fact that As is zero
is precisely the cubic relation that we previously found for the trisection of y(q)
itself.

Let w be a non-trivial cube root of unity. Then we find that

Alwq) = A(q) + (w — 1) A1 (q), A(w?q) = A(q) + (w* — 1)As(q)
follows immediately from the trisection since A = Ay + A;. Similarly
Awp) = A(p) + (w = 1) A1(p), A(w’p) = Ap) + (w? — 1) Ay (p)
where p is another variable. We do the algebra and find that
A(wp)A(wg) + wA(w?p) A(w?q) + 3(w + 1) A1 (p) A1 (q) = (w + 1) A(p)Alq)

which is essentially the identity of Berndt and Hart. Robin Chapman in “An
eta-function identity” did something similar using cube roots of unity instead
of multisection. He also generalized the result.

3 The Rogers-Ramanujan continued fraction

The next step would be to try a quadrisection of y(g), but the results are not
so simple, so we will skip that. We quintisect y(¢) and find that
Ag =1+ — g% — ¢ — 10 — 70 4 q100 4 145 1
Ay = —q+ ¢ 4 B — g126 _ 176 4 ;301 376 L
Ao= - +q" — g2+ q2 4+ — ¢+ ¢ — "'+ .
A:y(q) :A0+A1 +A2+A3+A4,
A = —qy(¢*) = —qA(¢®),
A3 =A,=0.

Notice that Az, A4 are zero and A is similar to the original power series and
this is like the previous y(q)® case. Using the coefficients from ¢° to ¢°, and
assuming there is a homogeneous quadratic relation, the relation tool produces

0= AgAs + A2,

This is simpler than the trisection of y(g), and probably this is the only irre-
ducible relation between the three power series. Now Ramanujan essentially



proves this relation using quintisection in a fragment in the 1988 Narosa edition
of the “Lost Notebook and Other Unpublished Papers” on page 238, equations
(20.1) to (20.4) and he first gives Jacobi’s identity on y(q)?® as equation (20.11).
The relation is an immediate consequence of a formula in Bruce Berndt, “Ra-
manujan’s Notebooks”, Part III, page 82

_ 25\ _ g 25 f(=¢",—¢") 2 f(=¢°, —¢*) }
R O R = =" 11
where we have the identifications
_ (25 f(—q157—q10)
Ao =1 )f(—q”,—q5)
and
f(_q57 _q20)

Ay = —qu(—q%)W-

One immediate consequence of the quadratic relation we found is that the
two ratios

Ay A = —A /Ay = R(q5)

are equal and the common value is

R@) =q—q®+qt —g® +¢* — ¢ +¢% — ...
We look up the coefficients of this power series in Neil Sloane’s OEIS and discover
it is sequence A007325 which is the Rogers-Ramanujan continued fraction. More
precisely this is given by

Definition 3. The Rogers-Ramanujan continued fraction is defined by

R(q)=¢"°/(1+q/(L+ /1 +*/(1+4*/...)))).

It would be difficult to discover this property without being able to search
the OEIS. Combining previous equations we have

y(a) 5 5
=1/R(¢°) — 1 — R(q°).
ay(q*) /R(&) @)
where the left side is the generating function of sequence A096562. Replacing
¢° by g we get immediately

y(q"?)

a"/*y(q°)
which is a known theorem about R(g). It is essentially equation (20.2) in the
Lost Notebook fragment mentioned earlier but written in terms of f(—¢). An-
other appearance is in Bruce Berndt, “Ramanujan’s Notebooks”, Part I1I, page
267. More notably, on page 50 of the “Lost Notebook”, Ramanujan explictly
exhibits both the 2-sections and 5-sections of the Rogers-Ramanujan continued
fraction as well as of its reciprocal all without any comment as usual. However,
he uses the dissection form and not the multisection form. This is proof that
he sometimes used the dissection form of multisection.

=1/R(q) — 1 — R(qg).



4 The Ramanujan cubic continued fraction

Maybe we were just lucky before, so naturally we wonder if we can find some-
thing else equally interesting. One approach would be to try a slightly more
complicated product of g-series and see what happens. Accordingly, let us try

A=y(@y(®) =1-q-2¢"+¢* +2¢° +¢° —2¢° +¢"° + ...,

and see what we get using trisection. We find that

Ao =1+ @ +¢5 —2¢° —2¢"% — ¢ + ¢ —24** — 24 + ...
Al — _q_|_q10 4 2q19 _ q28 _ 2q46 _ q55 =+ 2q82 _ q91 4 .
Ag = —2¢% +2¢° — 2¢M + 2¢™ + 2¢"7 — 2¢%° +2¢%% + ...,

A=y(@y(q®) = Ao+ A1 + A,
Ay = —qy(d”)y(¢"®) = —qA(q").

Again, using the coefficients from ¢° to ¢°, and assuming there is a homogeneous
quadratic relation, the relation tool produces

0= AgAs + 2A2.

Again, an immediate consequence of the relation is that the two ratios

Ay/(241) = —Ay /Ay = G(¢?)

are equal and the common value is

G(¢®) = q — g* +2¢"° — 2¢"3 — 16 + 4¢"° — 4¢4*% + ....

We look up the coefficients of this power series in Sloane’s OEIS and discover
it is sequence A092848 which is Ramanujan’s cubic continued fraction. More
precisely this is given by

Definition 4. The Ramanujan cubic continued fraction is defined by

Gla) =¢"*/1+(a+ a1+ (P +¢")/A+(+d°)/..))).

More properties are given in the “Lost Notebook” on page 366. Again, it
would be hard to discover this series had been studied before without being able
to search the OEIS. Combining previous equations we have

y(@)y(a*) 3 3
+ = =1/G(q°) — 2G(q°).
ay(q°)y(q'®) /e) &)
where the left side is the generating function of sequence A058531 which is the
normalized McKay-Thompson series of class 18A for the Monster group and the
right side is a symmetrization formula for it.



5 T-section of y(¢) and Klein’s quartic curve
Another path is to try the 7-section of y(g). We find that
Ap=14q" — % — g™ — 77— 126 4 210 4

A= =g 24 T 424" — T
Ay = —q% + P14 q100 — 24T _ 345 4 590 |
A5 —_ q5 o q12 +q26 o q40 o q117 +q145 + .
A=y(q) = Ao+ A1 + As + Az + Ay + As + Ag,
Ay = —*y(¢™) = —¢* A(¢"),

Ay = Ay = Ag = 0.

Notice that As, A4, Ag are zero so there are only four nonzero sections. Using the
coefficients from ¢° to ¢'?, and assuming there is a homogeneous cubic relation,
the relation tool produces four relations

0= AgA A5 — A3,

0= A()Ag + AQA% + AlAg,
0= AL A2 1 A A2 4 A5 A2,
0= AgA2 + Ap A2 + Ao A2,

The first relation dehomogenized yields

1= (Ao/A2)(A1/A2)(As5/Az).

This relation appears in Ramanujan’s second notebook on page 239, end of entry
18(i). Several other 7-sections also appear on the same page. Since the three
factor product is 1 we can assume that

Ao/Ay =X/Z, A1 /Ay =Y /X A5 /A0 =Z]Y

for some X,Y,Z. Rewriting the last three relations in terms of X,Y,Z and
simplifying we find the three are equivalent to the one relation

0=X3Y+Y3Z+ 23X

which is Klein’s quartic curve. A clue could have come also from the series
expansion of Ag/As which is OEIS sequence A108483 and has a reference to an
article by William Duke published in 2005 which refers to a chapter by Noam
Elkies in a 1999 book on Klein’s quartic curve.



6 A, Rogers-Ramanujan identities

The 7-section of y(q) also turns up in another context. In an article by George E.
Andrews, Anne Schilling, S. Ole Warnaar published in 1999 is a theorem 5.2 with
three equations and a comment that they had not found a fourth such equation.
I noticed that the three equations given correspond to Ay, As, Ao of the 7-section
of y(q), while the remaining nonzero section A; yields a fourth equation which
was discovered a few years later, a fact for which I am indebted to Ole Warnaar.
However, the connection to the 7-section apparently was unknown until I found
it in June 2006.

To illustrate this connection, find the power series expansion of the infinite
product in the first equation which we will write as

b(q) = 1+2q+3¢® +5¢° + 8¢* + 11¢° + 17¢° + 24¢" + 34¢® + ...
and multiply by y(q) to yield the power series we will write as

Blg) =b)y(@) =1+q—a"+q"° —¢"' = ¢+ + ...
Comparing this with the 7-section of y(q) we see that Ag = B(q"). Exactly
parallel reasoning holds for all four nonzero 7-sections of y(g). Thus, the missing
equation power series we will write as

c(q) =1+ q+3¢* +3¢° + 6¢* +8¢° + 13¢° + 17¢" + 25¢° + ...
and multiply by y(q) to yield the power series we will write as

Cla)=cy@) =14+ -¢" - - ¢ —¢® +¢* + ...
Comparing this with the 7-section of y(q) we see that A; = —qC(q").

7 Summary and Conclusion

The multisection of simple ¢-series examined by simple tools lead to the dis-
covery of results some of which have been known for a long time, some only
recently, as well as those which appear to be new. However, these results do not
require the extensive background and advanced tools that the original discov-
eries required. This is a good thing because it opens up a new world of results
which would not otherwise have been found except by those with specialized
knowledge.

The multisection examples given are those encountered in simple searches.
There is no doubt in my mind that many others could now be found, but there
is no way to know until they are looked for. Ramanujan himself explicitly and
implicitly used multisection, but didn’t really emphasize or explain that he was
doing so. I hope that I have shown how easy it can be to discover interesting
sequences and results in elliptic function theory in the style of Ramanujan using
only simple ideas in algebra and a few simple computer tools.

I thank Emeric Deutsch, Robert Haas, and Ralf Stephan for helpful com-
ments, and Zhu Cao for turning part of this into a journal article.



