|
|
A108274
|
|
Sum of the first 10^n terms in A097974. a(n) = sum_{m=1..10^n} t(m), where t(m) is the sum of the prime divisors of m that are less than or equal to sqrt(m).
|
|
1
|
|
|
0, 11, 327, 7714, 184680, 4617253, 118697919, 3149768778, 85356405077, 2357169671137, 66097467843823, 1875931900135854, 53804720498131760, 1556256544987695973, 45343922927650954928, 1329347125287604758708, 39180941384720954859005
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Does a(n+1)/a(n) converge?
|
|
LINKS
|
|
|
EXAMPLE
|
The first 10^2 terms in A097974 sum to 327, so a(2) = 327.
|
|
MATHEMATICA
|
s = 0; k = 1; Do[s += Plus @@ Select[Select[Divisors[n], PrimeQ], #<=Sqrt[n] &]; If[n == k, Print[s]; s = 0; k *= 10], {n, 1, 10^7}]
|
|
PROG
|
(PARI) a(n) = sum(m=1, 10^n, sumdiv(m, d, d*isprime(d)*(d<=sqrt(m)))); \\ Michel Marcus, Jul 07 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|