login
A108142
a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 1; a[5] = 1; a[6] = 1; for n >= 7, a[n] = 6*a[n - 1] - 5*a[n - 2] - 4*a[n - 3] - 3*a[ n - 4] + 2*a[n - 5] + a[n - 6]; then take absolute values.
0
1, 1, 1, 1, 1, 1, 3, 27, 151, 759, 3679, 17599, 83767, 397943, 1889059, 8964891, 42539855, 201849743, 957752095, 4544385823, 21562354767, 102309686479, 485441784803, 2303337053819, 10928934112423, 51855892302151
OFFSET
1,7
COMMENTS
The 2nd countdown sequence.
REFERENCES
Roger Bagula, Factoring Double Fibonacci Sequences, 2000
MATHEMATICA
F[1] = 1; F[2] = 1; F[3] = 1; F[4] = 1; F[5] = 1; F[6] = 1; F[n__] := F[n] = 6*F[n - 1] - 5*F[n - 2] - 4*F[n - 3] - 3*F[ n - 4] + 2*F[n - 5] + F[n - 6] a = Table[Abs[F[n]], {n, 1, 50}]
LinearRecurrence[{6, -5, -4, -3, 2, 1}, {1, 1, 1, 1, 1, 1, 3, 27, 151, 759, 3679, 17599}, 30] (* Harvey P. Dale, Apr 25 2018 *)
CROSSREFS
Sequence in context: A341566 A354655 A127509 * A056263 A026093 A215711
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 05 2005
EXTENSIONS
Edited by N. J. A. Sloane, Jun 08 2007
STATUS
approved