Old and New Problems From 55 Years of OEIS

Neil J. A. Sloane

Visiting Scholar, Rutgers; OEIS Foundation, Highland Park

Experimental Math Seminar, Oct 102019

(Additional notes added Oct 12 2019 - see next slide)

Additional notes added after the talk

1. Concerning the first section of the talk, Bradley Klee observed (October 11 2019) that since the sides of an equilateral triangle of area 1 have length 1.51967..., which is greater than the diagonal of a square of area 1, all three edges of the triangle have to be cut, and so a two-piece dissection of a triangle to a square is impossible. (The existence of a 3-piece dissection is still open.)
2. In the last section, when I thanked some of the people who keep the OEIS running, I accidentally omitted some key names, which have now been added.
3. After the talk, two people asked what is involved in being an editor.

Answer: look at the page on the wiki called https://oeis.org/wiki/Instructions For Associate Editors

Outline

- Dissections
- Roots of theta series; kissing numbers
- The Recaman Hypothesis
- Forest Fire; covering [1..n] with GPs
- All differences are distinct
- A Curious Property of 909
- Éric Angelini
- The OEIS at 55 and the future

Dissections

(Geometrical)

$00!01_{j}^{\prime} 00 \quad 0 \leqslant i<j<k \leqslant n-1$

Show there is no 3-piece dissection of an equilateral triangle into a square

Min. no. of pieces for dissecting n-gon into square?

$$
a(3)=4 ?
$$

4?, 1, 6?, 5?, 7?, 5?, 9?, 7?

Triangle to square dissection

A match midpoints of sides

B rotate strip of squares until midpoint is on edge of triangle strip

Probably unique?
Probably minimal?

Octagon to Square

Geoffrey Bennett, 1926

Show a(8) $=5$

Roots of Theta Series and Kissing Numbers

THETA SERIES OF \mathbb{Z}^{2} LATTICE

$$
1+4 q^{1}+4 q^{2}+4 q^{4}+8 q^{5}+\cdots
$$

THETA SERIES OF LATTICE $\widehat{\text { : }}$

$$
\begin{aligned}
\theta_{n}(k) & =\sum_{u \in \Lambda} q^{u \cdot u} \\
& =\sum_{k \geqslant 0} a(k) q^{k}
\end{aligned}
$$

$a(k)=$ no. of vectors u of squared leigh k

$$
\begin{aligned}
\theta_{E_{B}}=1 & +240 q^{2}+2160 q^{4} \\
& +6720 q^{6}+\cdots \\
=1 & +240 \sum_{k=1} \sigma_{3}(k) q^{2 k} \\
\sigma_{B}(k)= & \sum_{\alpha / k} d^{3}
\end{aligned}
$$

(A4009)
240 is kissing number of the lattice

Maximal Kissing Number in $\mathbf{R}^{\wedge} \mathbf{n}$
a "most wanted" sequence

- optimal
* optimal among lattice packings ξ non-lattice, may not be optimal

EXAMPLE

$$
\frac{\text { EXAMPLE }}{\text { O}_{D}}=1+24 q^{2}+24 q^{4}+96 q^{6}+\cdots
$$

COEPFT. OF $q^{N}=\#$ WAYS TO WRITE N AS A SUM OF 4 SQUARES

A miracle!

$$
\begin{aligned}
& D_{4}^{1 / 4}=1+6 q^{2}-48 q^{4} \\
& +672 q^{6}-10686 q^{6}+\cdots
\end{aligned}
$$

(A108092) HAS INTEGER COEFFTS.
Q: WHAT ARE THEY?

ROOTS OF GENERTING FUNCTIONS
WITH INTEGER COEPMCIENTS.
(With NADIA HENINGER Q ERIC RAINS) JCT A 2005 M. SOMOS: APPARENTLY $12^{\text {th }}$ ROOT OF THETA SERIES OF $24-7$ HEBE LATTICE HAS INTEGER COENTTT! US: $\left(\theta_{E_{8}}\right)^{1 / 8}$ DITTO
$\left(\theta_{\text {LEECH }}\right)^{1 / 24}$ DITTO
RING OF FORMAL POWER SERIES

$$
R=1+x \mathbb{Z}[[x]]
$$

n-th POWERS $B_{n}=\{9,9 E\}$

Th. 1 Let $\mu_{n}=n \prod_{p} p$

$$
f \in \theta_{n} \Leftrightarrow\left(f \bmod \mu_{n}\right) \in \theta_{n}
$$

Proof Claim: $\%_{0}^{\prime}$ in $f^{\prime / n}$ are integers iff \%'s in $\left(f+\mu_{n} x^{k}\right)$ are.
Well, let $\phi(f)=f^{1 / n}$. Taylor \Rightarrow

$$
\begin{aligned}
& \phi\left(f+\mu_{n} x^{k}\right)=\sum_{r=0}^{\infty} \frac{\left(\mu_{n} x^{n}\right)^{n}}{r!} \phi^{(r)}(f) \\
& =\sum_{r=0}^{\infty} \frac{\left(\mu_{n} x^{k}\right)^{r}}{r!} r\binom{\frac{1}{n}}{r} f^{\frac{1}{n}-r} \\
& =f^{\frac{1}{n}} \sum_{r=0}^{\infty} \mu_{c}^{\mu_{n}^{r} \cdot\left(\frac{1}{n}\right) \frac{x}{k}_{f^{r}}^{f^{r}}}
\end{aligned}
$$

Proof of

Let $|t|_{p}=$ HIGHEST POWER OF p THAT DIVIDES t
i) IF $\left.p\left|n,|c|_{p}=r\right| \mu_{n}\right|_{p}-r| |_{p}-\left.|r|\right|_{p}$ $\geqslant 0$
SINCE $|r!|_{p}<\frac{r}{p-1} \geqslant$
ii) IF $p \nmid n, \frac{1}{n}$ IS INVERTBLE MOD p An $|<|_{p} \geqslant 0$

$$
\begin{gathered}
\therefore\left(f+\mu_{n} x^{k}\right)^{1 / n}=f^{1 / n} \cdot g \\
g \in R .
\end{gathered}
$$

Cor 1. IF $f=1 \bmod \mu_{n}$, THEN f is $n^{\text {th }}$ POWER

THE 8-DIM. E E_{8} LATTICE

$$
\begin{aligned}
& \theta_{E_{8}}=1+240 \sum_{1}^{\infty} \sigma_{3}(m) x^{m} \\
& =1+240 x+2160 x^{2}+\cdots \\
& n=8 \quad \mu_{n}=8.2=16{ }^{(A 4009)} \\
& \theta_{E_{8}} \equiv 1 \mathrm{mal} 16 \therefore 15 \mathrm{~B}_{8} \\
& \begin{aligned}
\theta_{E_{8}}^{1 / 8}= & 1+30 x-2880 x^{2} \\
& +416640 x^{3}
\end{aligned} \\
& +416640 x^{3} \\
& -69178110 x^{4}+\text { ̈io } \\
& \text { (ÄO8091) }
\end{aligned}
$$

Q. WHAT ARE THESE COEFFTS.T

Th. 2 THETA SERIES OF EMREMAL EVEN UNIPOD. LATTICE $\mathbb{M} \mathbb{R}^{\text {d }}$ IS IN On, WHERE GET n BY DROPPING ALL PRIMES >5 So Leech^(1/24) has integer coefficients! FROM d.

CONJECTURE Suppose Θ_{Λ} has integer coefficients IF $\theta_{\Lambda}^{1 / n}$ HAS INT. COEFTS., THEN $\operatorname{dim} \wedge \geq n$ (?) [PERHAPS $n / \operatorname{dim} \wedge$??]
ANALOGUES FOR CODES FALSE! HOWEVER:
Th. 3 WEIGHT ENUM. RM (r, m) $\in \rho_{2 r}$
CONJECTURE ANALOG FOR BAH CODES.

The Recaman Hypothesis

Every number appears in Recaman's sequence (?)

Recamán's Sequence

0	1	2	3	4	5	6	7	8	9	\ldots
0	1	3	6	2	7	13	20	12	21	\ldots

$$
a_{n}=a_{n-1}-n
$$

if positive and new, otherwise

$$
a_{n}=a_{n-1}+n
$$

- from Bernardo Recamán Santos (Colombia), circa I99।

Pin plot of A005132

Recamán, continued

Scatterplot of A005132(n)

Drawn by Edmund Harriss, 2018

Recamán, continued
Numbers that take a record number of steps to appear:

I	I
2	4
4	131
19	99,734
61	$18 \mathrm{l}, 653$
879	328,002
1355	$325,374,625,245$
2406	$394,178,473,633,984$
852655	$\mathbf{1 0 \wedge} \mathbf{2 3 0}$

Benjamin Chaffin, January 2018

Allan Wilks, Nov. 2001

Bell Labs Talk, "How to Wreck a Man's Life"

Computed 10^15 terms

All numbers below 852,655 had appeared, but

$$
852,655=5 \text { * } 31 \text { * } 5501
$$

was missing
Ben Chaffin, 2018: After 10^230 terms, 852,655 is still missing

Ben Chaffin’s "Paint-dripping" log-log plot of 10^230 terms of Recaman’s sequence

Slope is about 1 . At $10^{\wedge} 41$ drops to 2023155 . At $10^{\wedge} 167$ drops from $10^{\wedge} 165$ to $10^{\wedge} 27$.

Easy Recaman

Can subtract as long as don't go negative
Repeats are OK when subtracting (or adding)

Easy Recaman (cont.)

Given sequence $p(n), n>=1$, and starting term s, define $a(n), n>=0$, by

$$
\begin{aligned}
& c(0)=s, \\
& a(n)=a(n-1)-p(n) \quad \text { if that is }>=0 \\
& a(n)=a(n-1)+p(n) \quad \text { otherwise }
\end{aligned}
$$

If $p(n)=n, s=0$

$$
\begin{aligned}
& 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 \\
& 0.1,3,0,4,9,3,10,2,11,1,12,4,13,27,12,28,11,29,10 \text { A8344 } \\
& 4,2
\end{aligned}
$$

Drop of $p(n+1)-p(n)$ $=\operatorname{DELTA}(p(n))$ every 2 steps

LINEAR CASE $\mathbf{p (n)}=\mathbf{n} \quad$ A008344

Low points at $\mathrm{n}=0,3,12,39,120, \ldots\left(3^{\wedge} \mathrm{k}-3\right) / 2$
Values at low points: $0,0,0,0, \ldots$
Epochs have lengths 3, 9, 27, 81, 243, ... (gaps between low points)

SQUARES $\mathrm{p}(\mathrm{n})=\mathrm{n}^{\wedge} \mathbf{2}$

$$
0,1,5,14,30,5,41,90,26,107,7,128,272,103,299,74 \text { A076042 }
$$

Low points at $\quad 0,5,10,19,34,59,104,181,314,545,946$,
Low values $\quad 0,5,7,4,19,104,74,193,515,725,241,1948$
Epoch lengths $5,5,9,15,25,45,77,133,231,401,693,1201$,
Tomas Rokicki: $\quad a(n)>0$ for $0<n<2^{\wedge} 25000$
Conjecture: a(n) NEVER returns to 0

PRIMES: p(n) = prime(n)

a(n)
Low points at
Low values
Epoch lengths
Zeros at
$0,2,5,0,7,18,5,22,3,26,55,24,61,20,63,16,69$,
$0,3,8,21,56,145,366,945,2506,6633,17776,48521$
$0,0,3,2,1,2,3,2,7,2$
$3,5,13,35,89,221,579,1561,4127,11143,30745,84585$,
0, 3, 369019, 22877145

Conjecture: infinitely many zeros (?)

Easy Recaman (cont) Analysis (primes case)

$$
p(n)=\operatorname{prime}(n) \sim n \log n, \operatorname{DELTA}(p(n))=p(n+1)-p(n) \sim \log n
$$

Epoch(k) starts at $\mathbf{n}=\mathbf{e}(\mathbf{k})$ with $a(n)=m$ (small)

$$
\begin{gathered}
a(n+1)=p(n)+m \sim e(k) \log e(k) \\
\text { DELTA = log e(k) } \\
\text { So } 2 e(k) \text { steps to get down to } 0 \\
\text { so } e(k+1)=e(k)+2 e(k)=3 e(k) \\
e(k)=c .3^{\wedge} k
\end{gathered}
$$

Probability of actually hitting $0=1 /$ DELTA $=1 / \log 3^{\wedge} k=1 / k$
Expected number of 0's = Sum 1/k = oo

So 0, 3, 369019, 22877145, ... may contain more terms!

Easy Recaman (cont.)
Analysis (squares case)

$$
\Delta\left(k^{2}\right)=(k+1)^{2}-k^{2}-2 k+1
$$

epoch e.
Exact number of drops to hit 10 is

$$
\begin{aligned}
& \text { Exact number of hopes to hit } 0 \text { is } \\
& " \lambda^{\prime \prime}=\frac{1}{2}\left(-k-\frac{3}{2}+\sqrt{\left(k+\frac{3}{2}\right)^{2}+2(k+1)^{2}+2 k}\right)
\end{aligned}
$$

must be an integer, so use
and got

$$
\begin{aligned}
& \lambda=\left[-\frac{k}{2}-\frac{3}{4}+\frac{1}{2} \sqrt{3 k^{2}+7 k+\frac{17}{4}+2 \mu}\right] \\
& k^{\prime}=k+1+2 \lambda r \\
& \mu^{\prime}=\mu+(k+1)^{2}-\left(2 k \lambda+3 \lambda+2 \lambda^{2}\right) \\
& (67.12) \\
& (67.3)
\end{aligned}
$$

I ran the recurrence $(67.1),(67.2),(67.3)$, start $Q R=5$, $\mu=5$, for 10000 steps. μ^{\prime} never zero.

$$
a(n)=A 76042 \text {, loos points at } k=A 325056 \text {, }
$$

values of low points $=$ A 324791 .

Easy Recaman (cont.)
Analysis (squares case, cont.)

Io get exactly down to $\mathrm{O}_{>}$need

$$
12 k^{2}+28 k+17+8 \mu
$$

to be an odd square. This can happen, many solutions, so no contradiction there
But it does not happen for 10000 epochs, and after that the prob. that it happens is essentially O.
Asymptotically: $\quad 2 \lambda \cong(\sqrt{3}-1) k$

$$
\begin{aligned}
& k^{\prime} \cong k+2 \lambda \cong \sqrt{3} k \\
& k=c(\sqrt{3})^{e} \text { at epoch e }
\end{aligned}
$$

Last drop $\cong 2 \sqrt{3} k$
Probability of $0=\frac{1}{2 \sqrt{3} k}=\frac{1}{e^{\prime}(\sqrt{3})^{e}}$
Expected no. of $O^{\prime} s=\sum_{e} \frac{1}{c^{\prime}(\sqrt{3})^{e}}<\infty$
So at most finitely many 0 's.
conjecture: None.

The Forest Fire

A229037 Jack Grahl, 2013
Smallest pos. number such that
NOT $a(j), a(j+k), a(j+2 k)$ in arithmetic progression

NOT

n	1	2	3	4	5	6	7	8	9	10
$\mathrm{a}(\mathrm{n})$	1	1	2	1	1	2	2	4	4	1

Forest Fire, A229037
Xan Gregg, 100,000 terms

Forest Fire, A229037
"garnet420", 16 million terms

Forest Fire variants
Richard Stanley, A309890, August 2019 allow 3-term DECREASING APS

Sébastien Palcoux, 1 million terms

Aaron Kemats, Sept 2019, A309108
Values $a(j) * a(j+k) * a(j+2 k)$ distinct

$$
1,1,1,2,3,2,5,6,7,4,10,9,7,11,12,8,13, \ldots
$$

Covering with
 Geometric Progressions

Suggested by a problem on the All-Russian Mathematical Olympiad 1995

Dmitry Kamenetsky, July 2019, A309095

$a(n)=$ max k such that can cover ($1,2,3, \ldots, k$) with n GPs (with rational ratios)

$$
\begin{equation*}
\mathrm{n}=1 \quad \mathrm{k}=2 \tag{1,2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{n}=2 \tag{1,2,4}
\end{equation*}
$$

$$
k=5
$$

$\mathrm{n}=3$
$k=8$
$(1,2,4,8),(3,5),(6,7)$
$\mathrm{n}=6$
$k=16$

$$
\begin{gathered}
(1,2,4,8,16),(3,6,12),(5,7) \\
(9,10),(11,13),(14,15)
\end{gathered}
$$

$2,5,8,10,13,16,18,21,25,28,30,33,35,37,40$
A309095
Rob Pratt found 362 terms, getting k out to 1000. Graph is essentially a straight line, slope 2.766...

Conjecture on Math StackExchange is slope $=\mathbf{e}$

Graph of Rob Pratt's values

Differences mostly 2', 3's, 4's. Max difference $=6$.

All Differences

Distinct

All Differences Distinct

$\begin{aligned} & 1, \\ & 2, \\ & 2,\end{aligned},-4,5,12,10,23,8, \ldots$
$4,-10,11,-9,15,-28, \ldots$
-14, 21, -20, 24, -43, ...
35, -41, 44, -67, ...
-76, 85, -111, ...
161, -196, ...
-357, ...
Triangle of differences

All visible numbers

 distinct!Lexicographically earliest

Explain!

Peter Kagey, Rémy Sigrist, NJAS, Sept. 20129

A Curious Property of 909

909!

A326344, Max Tohline, Sep 112019

$$
\begin{array}{lr}
R=\text { Reverse, } & R(10)=1 \\
P=\text { next Prime, } & P(10)=11 \\
C=\text { next composite, } C(10)=12
\end{array}
$$

$a(1)=1$; if n is prime, $a(n)=R(P(a(n-1)))$; if n is composite, $a(n)=R(C(a(n-1)))$
$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$,
$1,2,3,4,5,6,7,8,9,1,2,4,5,6,8,9,11,21,32$,

Theorem (Andrew Weimholt): a(n) <= 909

Proof: The only transitions from a 1-digit number to a 2-digit number are $a(n-1)=8$ or 9 to $a(n)=11$ with n prime.
(Continued on next slide)

Proof, continued Suppose a(n) = 11 with n prime. Two cases, $n==1$ or $-1 \bmod 6$. Two trees, here is one of them:

The only 3-digit number reached is 101 for $\mathbf{n}==1 \bmod 6$
There is now a single tree starting at 101, and the max 3-digit number reached is 909.

Robert Dougherty-Bliss (Rutgers): In base 3, a(n) <= 20 (A326894), and in base 7, a(n) <= 310 (A327241).
and in bases $b=2,3,4, \ldots$ the max value is
(A327701)
$1,20,3,107,5,310,7,668,909,1253,11,2082,13,3224,3880,4670,17,6558,19$

Éric Angelini

Éric Angelini (with Jean-Marc Falcoz), A309529, August 52019

$\mathrm{n}:$	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{a}(\mathrm{n}):$	2	4	8	16	17	11	10	17	16	16	17

$a(1)=2$, then $\quad \begin{aligned} & a(n+1)=a(n)+n \text {-th digit if } a(n) \text { is even } \\ & a(n+1)=a(n)-n \text {-th digit if } a(n) \text { is odd }\end{aligned}$

Coin-tossing paradox, infinitely many sign changes, at longer intervals (Feller)

200 terms

The OEIS at Age 55 and the Future

Summary of 55 Years

Begun at Cornell in 1964; books in 1973, 1995; on web since 1996.
The OEIS Foundation, 2009; Wiki in 2011.
Today 327,000 sequences; 8000 citations.
Typical citation:
Matthias Franz, The cohomology rings of homogeneous spaces, arXiv:1907.04777 [math.AT], July 10, 2019. "The connection between tensor products of A ∞-maps and hypercubes (Remark 4.2) was discovered by consulting the OEIS"

Thanks to the

Editors, Systems Administrators, Trustees who keep the OEIS running

Especially

David Applegate, Joerg Arndt, Jon Awbrey, Bruno Berselli, Lars Blomberg, David Corneth, Russ Cox, Susanna Cuyler, Harvey Dale, Michael De Vlieger, Amiram Eldar,

Georg Fischer, Felix Fröhlich, Olivier Gérard, Ron Graham, Charles Greathouse, Maximilian Hasler, Alois Heinz, Sean Irvine, Peter Luschny, Michel Marcus, Richard Mathar, Omar Pol, Martin Pedersen, Robert Price, Jon Schoenfield, Rémy Sigrist, Hugo van der Sanden, Gus Wiseman, ChaiWah Wu, and dozens more.

Thanks also to the Pro Bono Partnership (attorneys helping non-profit organizations)

33 new sequences accepted every day; 170 edits every day.

We need more editors

We are swamped with submissions

No pay, but lots of fun
Work as much or as little as you like
Contact njasloane@gmail.com

Requirements: Familiarity with Math, English, and the OEIS

The Future

Hire a manager?

- Either raise endowment of \$1M (at least)
- Or every year raise $\$ 40 K$ at least from some foundation

