Definition. Let d(n) be the number of divisors of n and $\sigma(n)$ be the sum of divisors of n. If $d(n) \mid \sigma(n)$, then n is called an arithmetic number.

Lemma. (a) Let p be a prime, then every prime factor of $\frac{p^k-1}{p-1}$ is either a factor of k or congruent to 1 modulo k;

(b) Let p be a prime, q be an odd prime factor of k, then $v_q\left(\frac{p^k-1}{p-1}\right) \leq v_q(k)$, where v_q is the q-adic valuation.

Theorem. Let $r \geq 1$, p_1, p_2, \dots, p_r be distinct primes, k_1, k_2, \dots, k_r be odd numbers such that $N = p_1^{k_1-1}p_2^{k_2-1}\cdots p_r^{k_r-1}$ is an arithmetic number. Then there exists $1 \leq i \leq r$ such that $p_i^{k_i-1}$ is an arithmetic number.

Proof. We have $d(N) = k_1 k_2 \cdots k_r$ is divisible by $\sigma(N) = \frac{p_1^{k_1} - 1}{p_1 - 1} \frac{p_2^{k_2} - 1}{p_2 - 1} \cdots \frac{p_r^{k_r} - 1}{p_r - 1}$. For an odd prime q, define

$$I_q = \left\{ 1 \le i \le r : v_q \left(\frac{p_i^{k_i} - 1}{p_i - 1} \right) < v_q(k_i) \right\},\,$$

If I_q is empty for all odd primes q, then every $p_i^{k_i-1}$ is an arithmetic number.

Now suppose that q is the smallest prime such that I_q is nonempty. Since $\sum_{i=1}^r v_q \left(\frac{p_i^{k_i} - 1}{p_i - 1} \right) \ge \sum_{i=1}^r v_q(k_i)$, we must have $v_q \left(\frac{p_i^{k_i} - 1}{p_i - 1} \right) > v_q(k_i) \ge 0$ for some $1 \le i \le r$. By part (b) of the Lemma above, we have $q \mid k_i$, so by part (a) we have $q \equiv 1 \pmod{k_i}$, hence every prime factor of k_i is q. By the minimality of q, $v_p \left(\frac{p_i^{k_i} - 1}{p_i - 1} \right) = v_p(k_i)$ for every prime factor p of k_i , so $p_i^{k_i-1}$ is an arithmetic number.