login
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n*(n-1)/2).
8

%I #12 Feb 22 2018 18:16:56

%S 1,1,1,2,5,15,50,181,698,2837,12062,53374,244923,1162536,5697119,

%T 28786266,149814059,802436166,4420515689,25031466730,145616087486,

%U 869760092469,5330945435272,33508699787635,215863606818041

%N G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n*(n-1)/2).

%H Paul D. Hanna, <a href="/A107590/b107590.txt">Table of n, a(n) for n = 0..100</a>

%F G.f. A(x) = x/series-reversion(x*F(x)) and thus A(x) = F(x/A(x)) where F(x) = A(x*F(x)) is the g.f. of A107591.

%F G.f. A(x)^2 = x/series-reversion(x*G(x)^2) and thus A(x) = G(x/A(x)^2) where G(x) = A(x*G(x)^2) is the g.f. of A107592.

%F Contribution from _Paul D. Hanna_, Apr 25 2010: (Start)

%F Let A = g.f. A(x), then A satisfies the continued fraction:

%F A = 1/(1- x/(1- (A-1)*x/(1- A^2*x/(1- A*(A^2-1)*x/(1- A^4*x/(1- A^2*(A^3-1)*x/(1- A^6*x/(1- A^3*(A^4-1)*x/(1- ...)))))))))

%F due to an identity of a partial elliptic theta function.

%F (End)

%e A = 1 + x + x^2*A^1 + x^3*A^3 + x^4*A^6 + x^5*A^10 +...

%e = 1 + x + (x^2 + x^3 + x^4 + 2*x^5 + 5*x^6 + 15*x^7 +...)

%e + (x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 33*x^7 +...)

%e + (x^4 + 6*x^5 + 21*x^6 + 62*x^7 +...)

%e + (x^5 + 10*x^6 + 55*x^7 +...) +...

%e = 1 + x + x^2 + 2*x^3 + 5*x^4 + 15*x^5 + 50*x^6 + 181*x^7 +...

%o (PARI) {a(n) = my(A=1+x+x*O(x^n)); for(k=1,n, A = 1 + sum(j=1,n, x^j * A^(j*(j-1)/2) + x*O(x^n)) ); polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A107591, A107592. A155804, A219358.

%K eigen,nonn

%O 0,4

%A _Paul D. Hanna_, May 17 2005