login
Expansion of x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5).
1

%I #16 Dec 26 2022 04:58:55

%S 0,1,0,0,-1,-1,-1,-1,-1,-2,-3,-5,-7,-10,-14,-20,-29,-42,-61,-88,-127,

%T -183,-264,-381,-550,-794,-1146,-1654,-2387,-3445,-4972,-7176,-10357,

%U -14948,-21574,-31137,-44939,-64859,-93609,-135103,-194990,-281423,-406169,-586211,-846060,-1221092,-1762364

%N Expansion of x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,1).

%F a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) for n>=5.

%F O.g.f.: x^2*(-1+x+x^2)/(-1+x+x^2-x^3+x^5). - _R. J. Mathar_, Dec 02 2007

%F a(n) = A107293(n+2)-A107293(n+1)-A107293(n). - _R. J. Mathar_, Dec 17 2017

%p a[0]:=0:a[1]:=1:a[2]:=0:a[3]:=0:a[4]:=-1:

%p for n from 5 to 46 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-5] od:

%p seq(a[n],n=0..46);

%t LinearRecurrence[{1,1,-1,0,1},{0,1,0,0,-1},50] (* _Harvey P. Dale_, Oct 11 2015 *)

%K sign,easy

%O 1,10

%A _Roger L. Bagula_, Jun 08 2005

%E Edited by _N. J. A. Sloane_, May 13 2006

%E New name using g.f. from _Joerg Arndt_, Dec 26 2022