login
a(n) = 4*a(n-1)-2*a(n-2)-3*a(n-3)+2*a(n-4), n>5.
0

%I #7 Mar 03 2024 14:17:30

%S 3,3,10,29,94,292,913,2844,8862,27605,85990,267852,834337,2598884,

%T 8095286,25216069,78545726,244662676,762101617,2373876076,7394404494,

%U 23032886325,71745311318,223480011292,696119572545,2168348106292

%N a(n) = 4*a(n-1)-2*a(n-2)-3*a(n-3)+2*a(n-4), n>5.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -2, -3, 2).

%F G.f.: (2*x-1)*(x^4-2*x^2-3*x+3)/( (x-1) * (2*x^3-x^2-3*x+1)) . [Sep 28 2009]

%t b1 = x /. NSolve[x^3 - 3*x^2 - x + 2 == 0, x][[1]] b2 = x /. NSolve[x^3 - 3*x^2 - x + 2 == 0, x][[2]] b3 = x /. NSolve[x^3 - 3*x^2 - x + 2 == 0, x][[3]] digits = 25 a = Table[N[3*(b3^n + b1^n + b2^n)/(b3 + b2 + b1)], {n, 0, digits}] Floor[a]

%t LinearRecurrence[{4,-2,-3,2},{3,3,10,29,94,292},30] (* _Harvey P. Dale_, Aug 21 2020 *)

%K nonn,easy

%O 0,1

%A _Roger L. Bagula_, May 20 2005

%E Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009