%I #18 Feb 09 2017 16:24:51
%S 3,17,29,71,311,317,347,419,431,449,617,743,857,881,941,947,1013,1091,
%T 1151,1163,1193,1217,1451,1601,1847,1877,2063,2069,2153,2207,2357,
%U 2411,2459,2591,2777,2861,2963,3023,3089,3257,3359,3407,3461,3533
%N Primes of the form 3x^2 + 17y^2.
%C Discriminant = -204. See A107132 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A107158/b107158.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t QuadPrimes2[3, 0, 17, 10000] (* see A106856 *)
%o (PARI) list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\17), if(isprime(t=w+17*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005