%I #23 Sep 08 2022 08:45:18
%S 5,11,29,59,101,131,149,179,251,269,389,419,461,491,509,659,701,821,
%T 941,971,1019,1061,1091,1109,1181,1229,1259,1301,1451,1499,1571,1619,
%U 1709,1811,1901,1931,1949,1979,2069,2099,2141,2309,2339,2381,2411
%N Primes of the form 5x^2 + 6y^2.
%C Discriminant = -120. See A107132 for more information.
%C Except for 5, also primes of the form 11x^2 + 4xy + 14y^2. See A140633. - _T. D. Noe_, May 19 2008
%H Vincenzo Librandi and Ray Chandler, <a href="/A107135/b107135.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {5, 11, 29, 59, 101} (mod 120). - _T. D. Noe_, May 02 2008
%t QuadPrimes2[5, 0, 6, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(3000) | p mod 120 in {5, 11, 29, 59, 101} ]; // _Vincenzo Librandi_, Jul 23 2012
%o (PARI) list(lim)=my(v=List([5]),s=[11,29,59,101]); forprime(p=11,lim, if(setsearch(s,p%120), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%Y Cf. A139827.
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 13 2005