login
Least common multiple of all parts in Zeckendorf representation of n.
5

%I #26 Aug 30 2023 14:20:58

%S 1,2,3,3,5,5,10,8,8,8,24,24,13,13,26,39,39,65,65,130,21,21,42,21,21,

%T 105,105,210,168,168,168,168,168,34,34,34,102,102,170,170,170,136,136,

%U 136,408,408,442,442,442,1326,1326,2210,2210,2210,55,55,110,165,165,55,55,110,440,440

%N Least common multiple of all parts in Zeckendorf representation of n.

%C Records: A106531(n) = a(A106532(n)).

%C a(n) = lcm_{k=0..A007895(n)-1} A035516(n,k). - _Reinhard Zumkeller_, Mar 10 2013

%H Alois P. Heinz, <a href="/A106530/b106530.txt">Table of n, a(n) for n = 1..16384</a> (first 10000 terms from Reinhard Zumkeller)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ZeckendorfRepresentation.html">Zeckendorf Representation</a>

%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>.

%e n=33: 21+8+3+1 = 33 -> a(33) = lcm(21,8,3,1) = (21*8*3*1)/3 = 168.

%p F:= combinat[fibonacci]:

%p a:= proc(n) option remember; local j;

%p if n=0 then 1

%p else for j from 2 while F(j+1)<=n do od;

%p ilcm(a(n-F(j)), F(j))

%p fi

%p end:

%p seq(a(n), n=1..64); # _Alois P. Heinz_, Mar 17 2018

%t t = Fibonacci /@ Range@ 21; Table[LCM @@ If[MemberQ[t, n], {n}, Most@ MapAt[# + 1 &, Abs@ Differences@ FixedPointList[# - First@ Reverse@ TakeWhile[t, Function[k, # >= k]] &, n], -1]], {n, 61}] (* _Michael De Vlieger_, May 17 2016 *)

%o (Haskell)

%o a106530 = foldr lcm 1 . a035516_row -- _Reinhard Zumkeller_, Mar 10 2013

%Y Cf. A000045, A014417, A003714.

%K nonn,look

%O 1,2

%A _Reinhard Zumkeller_, May 08 2005