Proof of an explicit formula for Bower's CycleBG transform

Petros Hadjicostas

September 2017

In this note, we prove an explicit formula for the CycleBG transform introduced by Christian G. Bower in 2005 in the documentation of sequences A106362, A106364, A106365, $\underline{\text { A106366 }}, \underline{\text { A106367 }}, \underline{\text { A106368, and A106369 }}$ in the OEIS. Given an ordinary generating function

$$
A(x)=\sum_{k \geq 1} a_{k} x^{k} \text { of a sequence of numbers }\left(a_{n}\right)_{n=1}^{\infty},
$$

the CycleBG transform of A is defined by

$$
T(A)(x)=A(x)+\operatorname{invMOEBIUS}\left(A\left(x^{2}\right)-A(x)+\operatorname{invEULER}(\operatorname{Carlitz}(A)(x))\right),
$$

where the Carlitz transform of A is defined by

$$
\operatorname{Carlitz}(A)(x)=\frac{1}{1-\sum_{k=1}^{\infty}(-1)^{k+1} A\left(x^{k}\right)}
$$

We prove that

$$
\begin{equation*}
T(A)(x)=A(x)-\sum_{k=0}^{\infty} A\left(x^{2 k+1}\right)+\sum_{k=1}^{\infty} \frac{\phi(k)}{k} \log \left(\operatorname{Carlitz}(A)\left(x^{k}\right)\right) \tag{1}
\end{equation*}
$$

Proof. If we let $\sum_{k=1}^{\infty} b_{k} x^{k}=\operatorname{invEULER}(\operatorname{Carlitz}(A)(x))$, then

$$
\operatorname{EULER}\left(\sum_{k=1}^{\infty} b_{k} x^{k}\right)=\operatorname{Carlitz}(A)(x)
$$

If we also let

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{d_{k}}{k} x^{k}=\log (\operatorname{Carlitz}(A)(x)) \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
b_{n}=\frac{1}{n} \sum_{s \mid n} \mu\left(\frac{n}{s}\right) d_{s} \quad \text { for } n \in \mathbb{Z}_{>0} \tag{3}
\end{equation*}
$$

where $\mu(\cdot)$ is the Möbius function. See Bernstein and Sloane [1, pp. 60-61]. In addition,

$$
\operatorname{MOEBIUS}((T(A)-A)(x))=A\left(x^{2}\right)-A(x)+\sum_{k=1}^{\infty} b_{k} x^{2}
$$

If we let

$$
\begin{equation*}
A\left(x^{2}\right)-A(x)=\sum_{k=1}^{\infty} e_{k} x^{k} \quad \text { and } \quad(T(A)-A)(x)=\sum_{k=1}^{\infty} f_{k} x^{k} \tag{4}
\end{equation*}
$$

and use equation (3) and the material in Bernstein and Sloane [1, p. 60], we get

$$
\begin{align*}
f_{n}=\sum_{s \mid n}\left(e_{s}+b_{s}\right) & =\sum_{s \mid n} e_{s}+\frac{1}{n} \sum_{s \mid n} \frac{n}{s} \sum_{t \mid s} \mu\left(\frac{s}{t}\right) d_{t} \\
& =\sum_{s \mid n} e_{s}+\frac{1}{n} \sum_{s \mid n}\left(\sum_{t \mid s} t \mu\left(\frac{s}{t}\right)\right) d_{n / s} \\
& =\sum_{s \mid n} e_{s}+\frac{1}{n} \sum_{s \mid n} \phi(s) d_{n / s} \tag{5}
\end{align*}
$$

It follows then from equations (2), (4), and (5) that

$$
\begin{aligned}
(T(A)-A)(x) & =\sum_{n=1}^{\infty} \frac{1}{n} \sum_{s \mid n} \phi(s) d_{n / s} x^{n}+\sum_{n=1}^{\infty} \sum_{s \mid n} e_{s} x^{n} \\
& =\sum_{s=1}^{\infty} \frac{\phi(s)}{s} \sum_{r=1}^{\infty} \frac{d_{r}}{r}\left(x^{s}\right)^{r}+\sum_{r=1}^{\infty} \sum_{s=1}^{\infty} e_{s}\left(x^{r}\right)^{s} \\
& =\sum_{s=1}^{\infty} \frac{\phi(s)}{s} \log \left(\operatorname{Carlitz}(A)\left(x^{s}\right)\right)+\sum_{r=1}^{\infty}\left(A\left(x^{2 r}\right)-A\left(x^{r}\right)\right)
\end{aligned}
$$

from which we can easily prove equation (1).

References

[1] M. Bernstein and N. J. A. Sloane (1995), "Some canonical sequences of integers," Linear Algebra and its Applications, Vol. 226-228, 57-72.

