Linear Recurrences with a Single Minimal Period

Robert Israel

March 27, 2024

Consider an *m*-step linear recurrence over a finite field \mathbb{F} :

$$x(k) = \sum_{i=1}^{m} c_i x(k-i)$$

where $c_m \neq 0$. Each *m*-tuple $(a(0), \ldots, a(m-1)) \in \mathbb{F}^m$ determines a sequence x(k) with the initial condition x(i) = a(i) for $0 \leq i \leq m-1$, which is periodic because \mathbb{F}^m is finite ¹. We wish to determine whether the minimal period of the sequence is the same for all initial conditions except $(0, \ldots, 0)$ (which has period 1).

Let M be the $m \times m$ matrix with last row $(c_m, c_{m-1}, \ldots, c_1, \text{ first super-diagonal all 1's,} and all other entries 0. The recurrence can be written in matrix-vector form as <math>X(k) = MX(k-1)$ where $X(k) = (x(k+1-m), x(k+2-m), \ldots, x(k))^T$. Thus for the case m = 3 we have

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_3 & c_2 & c_1 \end{pmatrix} \text{ and } \begin{pmatrix} x(k-2) \\ x(k-1) \\ x(k) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_3 & c_2 & c_1 \end{pmatrix} \begin{pmatrix} x(k-3) \\ x(k-2) \\ x(k-1) \end{pmatrix}$$

' The characteristic polynomial of M is $C(z) = z^m - c_1 z^{m-1} - \ldots - c_m$. This is also the minimal polynomial of M.

Now the sequence with initial condition $v \in \mathbb{F}^m$ has period k if $M^k v = v$. The minimal period for initial condition v is the least positive integer k such that $M^k v = v$. All periods for v will be multiples of this minimal period by positive integers.

Let $G(z) = \gcd(z^k - 1, C(z))$. Then $z^k - 1 = G(z)Q(z)$ and C(z) = G(z)R(z) for some $Q(z), R(z) \in \mathbb{F}[z]$, so G(M)v = 0 for $v \in \operatorname{Ran}(R(z))$. If G(z) has positive degree, this is not just $\{0\}$ because C(z) is the minimal polynomial of M), and then $M^k v - v =$ Q(M)G(M)v = 0, i.e. such v will have period k. On the other hand, by Bezout's identity $G(z) = A(z)(z^k - 1) + B(z)C(z)$ for some $A(z), B(z) \in \mathbb{F}[z]$, so $G(M) = A(M)(M^k - 1)$.

¹Note that since $c_m \neq 0$ and we are working over a field, the sequence can be run backwards as well. So if $(x(k), \ldots, x(k+m-1)) = (x(j), \ldots, x(j+m-1))$ with k > j, then $(x(k-j), \ldots, x(k-j+m-1)) = (x(0), \ldots, x(m-1))$. Thus the sequence is periodic, not just eventually periodic.

If $x^k - 1$ is not divisible by C(z), so G has degree $\langle m$, then $G(M) \neq 0$ so $M^k - 1 \neq 0$, and thus not all nonzero initial conditions v have period k. Thus a necessary and sufficient condition for the minimal period to be the same for all initial conditions except $(0, \ldots, 0)$ is that the least k for which $z^k - 1$ is divisible by C(z) is also the least k for which $z^k - 1$ and C(z) are not coprime.

For a polynomial q(z) over \mathbb{F} with $q(0) \neq 0$, I will denote the least k such that $x^k - 1$ is divisible by q(z) as K(q(z)).

If $z^k - 1$ is divisible by $q(z)^e$ for some e > 1, say $z^k - 1 = q(z)^e A(z)$, then taking the derivative with respect to z we have $kz^{k-1} = eq(z)^{e-1}q'(z)A(z) + q(z)^e A'(z)$, Of course $q(0) \neq 0$, so this can only be true if k is a multiple of the characteristic of \mathbb{F} . On the other hand, if p is the characteristic, $z^{jp} - 1 = (z^j - 1)^p$, so if q(z) is a factor of $z^{j} - 1$, $q(z)^p$ is a factor of $z^{kj} - 1$. And if $z^{jp} - 1$ is divisible by an irreducible polynomial q(z), then $z^j - 1$ must be divisible by q(z), and $z^{jp} - 1$ is divisible by $q(z)^p$. In particular, if the minimal period is the same for all initial conditions except $(0, \ldots, 0)$, C(z) must be squarefree.

In the case of a linear factor z - r, $z^k - 1$ is divisible by z - r if and only if $r^k - 1 = 0$, Thus K(z-r) is the order of r in the multiplicative group F^{\times} of F. This can be efficiently computed in Maple using MultiplicativeOrder in the NumberTheory package.

For an irreducible factor q(z) of higher degree, we consider the splitting field \mathbb{K} of q(z). If $z^k - 1$ is divisible (over \mathbb{F}) by q(z), then $r^k - 1 = 0$ (in \mathbb{K}) for any root of q(z). Thus K(q(z)) is the multiplicative order of a root of q(z) in \mathbb{K}^{\times} . This can be efficiently computed in Maple using **order** in the **GF** package.