Linear Recurrences with a Single Minimal Period

Robert Israel

March 27, 2024

Consider an m-step linear recurrence over a finite field \mathbb{F} :

$$
x(k)=\sum_{i=1}^{m} c_{i} x(k-i)
$$

where $c_{m} \neq 0$. Each m-tuple $(a(0), \ldots, a(m-1)) \in \mathbb{F}^{m}$ determines a sequence $x(k)$ with the initial condition $x(i)=a(i)$ for $0 \leq i \leq m-1$, which is periodic because \mathbb{F}^{m} is finite 1. We wish to determine whether the minimal period of the sequence is the same for all initial conditions except $(0, \ldots, 0)$ (which has period 1).

Let M be the $m \times m$ matrix with last row $\left(c_{m}, c_{m-1}, \ldots, c_{1}\right.$, first super-diagonal all 1 's, and all other entries 0 . The recurrence can be written in matrix-vector form as $X(k)=$ $M X(k-1)$ where $X(k)=(x(k+1-m), x(k+2-m), \ldots, x(k))^{T}$. Thus for the case $m=3$ we have

$$
M=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
c_{3} & c_{2} & c_{1}
\end{array}\right) \text { and }\left(\begin{array}{c}
x(k-2) \\
x(k-1) \\
x(k)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
c_{3} & c_{2} & c_{1}
\end{array}\right)\left(\begin{array}{c}
x(k-3) \\
x(k-2) \\
x(k-1)
\end{array}\right)
$$

'The characteristic polynomial of M is $C(z)=z^{m}-c_{1} z^{m-1}-\ldots-c_{m}$. This is also the minimal polynomial of M.

Now the sequence with initial condition $v \in \mathbb{F}^{m}$ has period k if $M^{k} v=v$. The minimal period for initial condition v is the least positive integer k such that $M^{k} v=v$. All periods for v will be multiples of this minimal period by positive integers.

Let $G(z)=\operatorname{gcd}\left(z^{k}-1, C(z)\right)$. Then $z^{k}-1=G(z) Q(z)$ and $C(z)=G(z) R(z)$ for some $Q(z), R(z) \in \mathbb{F}[z]$, so $G(M) v=0$ for $v \in \operatorname{Ran}(R(z))$. If $G(z)$ has positive degree, this is not just $\{0\}$ because $C(z)$ is the minimal polynomial of M), and then $M^{k} v-v=$ $Q(M) G(M) v=0$, i.e. such v will have period k. On the other hand, by Bezout's identity $G(z)=A(z)\left(z^{k}-1\right)+B(z) C(z)$ for some $A(z), B(z) \in \mathbb{F}[z]$, so $G(M)=A(M)\left(M^{k}-1\right)$.

[^0]If $x^{k}-1$ is not divisible by $C(z)$, so G has degree $<m$, then $G(M) \neq 0$ so $M^{k}-1 \neq 0$, and thus not all nonzero initial conditions v have period k. Thus a necessary and sufficient condition for the minimal period to be the same for all initial conditions except $(0, \ldots, 0)$ is that the least k for which $z^{k}-1$ is divisible by $C(z)$ is also the least k for which $z^{k}-1$ and $C(z)$ are not coprime.

For a polynomial $q(z)$ over \mathbb{F} with $q(0) \neq 0$, I will denote the least k such that $x^{k}-1$ is divisible by $q(z)$ as $K(q(z))$.

If $z^{k}-1$ is divisible by $q(z)^{e}$ for some $e>1$, say $z^{k}-1=q(z)^{e} A(z)$, then taking the derivative with respect to z we have $k z^{k-1}=e q(z)^{e-1} q^{\prime}(z) A(z)+q(z)^{e} A^{\prime}(z)$, Of course $q(0) \neq 0$, so this can only be true if k is a multiple of the characteristic of \mathbb{F}. On the other hand, if p is the characteristic, $z^{j p}-1=\left(z^{j}-1\right)^{p}$, so if $q(z)$ is a factor of $z^{j}-1, q(z)^{p}$ is a factor of $z^{k j}-1$. And if $z^{j p}-1$ is divisible by an irreducible polynomial $q(z)$, then $z^{j}-1$ must be divisible by $q(z)$, and $z^{j p}-1$ is divisible by $q(z)^{p}$. In particular, if the minimal period is the same for all initial conditions except $(0, \ldots, 0), C(z)$ must be squarefree.

In the case of a linear factor $z-r, z^{k}-1$ is divisible by $z-r$ if and only if $r^{k}-1=0$, Thus $K(z-r)$ is the order of r in the multiplicative group F^{\times}of F. This can be efficiently computed in Maple using MultiplicativeOrder in the NumberTheory package.

For an irreducible factor $q(z)$ of higher degree, we consider the splitting field \mathbb{K} of $q(z)$. If $z^{k}-1$ is divisible (over \mathbb{F}) by $q(z)$, then $r^{k}-1=0$ (in \mathbb{K}) for any root of $q(z)$. Thus $K\left(q(z)\right.$ is the multiplicative order of a root of $q(z)$ in \mathbb{K}^{\times}. This can be efficiently computed in Maple using order in the GF package.

[^0]: ${ }^{1}$ Note that since $c_{m} \neq 0$ and we are working over a field, the sequence can be run backwards as well. So if $(x(k), \ldots, x(k+m-1))=(x(j), \ldots, x(j+m-1))$ with $k>j$, then $(x(k-j), \ldots, x(k-j+m-1))=$ $(x(0), \ldots, x(m-1))$. Thus the sequence is periodic, not just everntually periodic.

