login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106296 Period of the Lucas 4-step sequence A073817 mod prime(n). 3

%I

%S 5,26,312,342,120,84,4912,6858,12166,280,61568,1368,240,162800,103822,

%T 303480,205378,226980,100254,357910,2664,998720,1157520,9320,368872,

%U 1030300,10608,1225042,2614040,13874,2048382,4530768,136,772880,3307948

%N Period of the Lucas 4-step sequence A073817 mod prime(n).

%C This sequence is the same as the period of Fibonacci 4-step sequence (A000078) mod prime(n) except for n=103, which corresponds to the prime 563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. We have a(n) < prime(n) for primes 563 and A106280.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step</a>

%F a(n) = A106295(prime(n)).

%t n=4; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]

%Y Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106280 (primes p such that x^4-x^3-x^2-x-1 mod p has 4 distinct zeros).

%K nonn

%O 1,1

%A _T. D. Noe_, May 02 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 18:03 EDT 2022. Contains 356107 sequences. (Running on oeis4.)