login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106167 Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 4. 6

%I

%S 0,0,0,0,1,0,1,1,3,2,7,8,28,47,155,457,2482,19914

%N Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 4.

%D R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.

%D R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.

%D J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.

%D V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (<a href="http://neilsloane.com/doc/pless.txt">Abstract</a>, <a href="http://neilsloane.com/doc/pless.pdf">pdf</a>, <a href="http://neilsloane.com/doc/pless.ps">ps</a>, <a href="http://neilsloane.com/doc/plesstaba.ps">Table A</a>, <a href="http://neilsloane.com/doc/plesstabd.ps">Table D</a>).

%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).

%K nonn,hard,more

%O 1,9

%A _N. J. A. Sloane_, May 09 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 01:50 EDT 2021. Contains 343808 sequences. (Running on oeis4.)