login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes for which -15 is a primitive root.
1

%I #39 Mar 31 2024 15:04:51

%S 2,11,13,29,37,41,43,59,71,73,89,97,101,103,127,131,149,157,163,179,

%T 191,193,239,251,269,281,307,313,337,359,373,389,401,419,431,433,449,

%U 457,461,479,487,491,509,521,523,547,569,577,599,607,613,641,701,719,727,733,757

%N Primes for which -15 is a primitive root.

%C From _Jianing Song_, Jan 27 2019: (Start)

%C All terms except the first are congruent to 7, 11, 13 or 14 modulo 15. If we define

%C Pi(N,b) = # {p prime, p <= N, p == b (mod 15)};

%C Q(N) = # {p prime, 2 < p <= N, p in this sequence},

%C then by Artin's conjecture, Q(N) ~ (94/95)*C*N/log(N) ~ (188/95)*C*(Pi(N,7) + Pi(N,11) + Pi(N,13) + Pi(N,14)), where C = A005596 is Artin's constant.

%C Conjecture: if we further define

%C Q(N,b) = # {p prime, p <= N, p == b (mod 15), p in this sequence},

%C then we have:

%C Q(N,7) ~ (10/47)*Q(N) ~ ( 80/95)*C*Pi(N,7);

%C Q(N,11) ~ (12/47)*Q(N) ~ ( 96/95)*C*Pi(N,11);

%C Q(N,13) ~ (10/47)*Q(N) ~ ( 80/95)*C*Pi(N,13);

%C Q(N,14) ~ (15/47)*Q(N) ~ (120/95)*C*Pi(N,14).

%C Numeric verification up tp N = 10^8:

%C | Q(N,7) | Q(N,11) | Q(N,13) | Q(N,14) | Q(N)

%C -------------+---------+---------+---------+---------+---------

%C N = 10^3 | 14 | 18 | 13 | 19 | 64

%C Q(N,*)/Q(N) | 0.21875 | 0.28125 | 0.20313 | 0.29688 | 1.00000

%C -------------+---------+---------+---------+---------+---------

%C N = 10^4 | 97 | 115 | 90 | 138 | 440

%C Q(N,*)/Q(N) | 0.22045 | 0.26136 | 0.20455 | 0.31364 | 1.00000

%C -------------+---------+---------+---------+---------+---------

%C N = 10^5 | 753 | 891 | 750 | 1129 | 3523

%C Q(N,*)/Q(N) | 0.21374 | 0.25291 | 0.21289 | 0.32047 | 1.00000

%C -------------+---------+---------+---------+---------+---------

%C N = 10^6 | 6153 | 7395 | 6176 | 9247 | 28971

%C Q(N,*)/Q(N) | 0.21238 | 0.25526 | 0.21318 | 0.31918 | 1.00000

%C -------------+---------+---------+---------+---------+---------

%C N = 10^7 | 52427 | 62973 | 52368 | 78398 | 246166

%C Q(N,*)/Q(N) | 0.21297 | 0.25582 | 0.21273 | 0.31848 | 1.00000

%C -------------+---------+---------+---------+---------+---------

%C N = 10^8 | 453936 | 544551 | 453699 | 680226 | 2132412

%C Q(N,*)/Q(N) | 0.21287 | 0.25537 | 0.21276 | 0.31899 | 1.00000

%C -------------+---------+---------+---------+---------+---------

%C Conjectured | 0.21277 | 0.25532 | 0.21277 | 0.31915 | 1.00000

%C (End)

%H Vincenzo Librandi, <a href="/A105887/b105887.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ArtinsConstant.html">Artin's constant</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Artin%27s_conjecture_on_primitive_roots">Artin's conjecture on primitive roots</a>

%H <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>

%t pr=-15; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]

%Y Cf. A005596 (Artin's constant).

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Apr 24 2005