%I #4 Oct 01 2022 22:38:03
%S 1,0,8,4,9,9,8,7,7,8,2,2,7,8,7,1,9,3,3,5,8,3,3,3,8,8,6,4,4,6,6,5,0,7,
%T 8,0,5,2,8,7,7,6,1,1,4,0,2,7,5,6,5,7,3,9,8,6,8,9,4,7,7,9,5,8,3,3,8,2,
%U 9,3,7,9,7,2,8,3,8,1,6,2,9,7,2,8,1,4,3,0,8,1,9,0,6,5,8,4,6,9,4,6,8,4,4,7,8
%N Decimal expansion of Pi^163.
%C Let M = round(Pi^163) then M = d_1 * d_2 = 529774009007567162534610269 * 2048040786788341811748262618745700181736326274373241213. M = a^2 + b^2 = 32668814662851590790630599022445863401819 * 4212757618487543121739337171097252478756. s(M), the sum of proper divisors of M, equals 2048040786788341811748262619275474190743893436907851482. phi(s(M)) = 620618102278114214685524246515921764248373667313633800. s(M)/phi(s(M)) = 3.300001690686367432257271232... (phi(m) is the totient function).
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 1084998778227871933583338864466507805287761140275657398689477958338293797283816297.2814308190658469468447826100...
%t RealDigits[Pi^163, 10, 110][[1]]
%o (PARI) Pi^163 \\ _Charles R Greathouse IV_, Oct 01 2022
%K cons,nonn
%O 82,3
%A _Gerald McGarvey_, Apr 09 2005