%I #12 May 04 2020 09:33:00
%S 0,1,2,5,3,4,8,6,7,16,11,9,10,14,12,13,17,15,25,20,18,19,23,21,22,26,
%T 24,51,34,29,27,28,32,30,31,35,33,43,38,36,37,41,39,40,44,42,52,47,45,
%U 46,50,48,49,53,78,61,56,54,55,59,57,58,62,60,70,65,63,64,68,66,67,71,69
%N Write numbers in ternary under each other; to get the next block of 3^k (k >= 0) terms of the sequence, start at 3^k, read diagonals in upward direction and convert to decimal.
%C This is a permutation of the nonnegative integers.
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
%e ..0
%e ..1
%e ..2
%e .10
%e .11
%e .12
%e .20
%e .21
%e .22
%e 100 <- Starting here, the upward diagonals
%e 101 read 121,102,100,..., giving 16,11,9,...
%e 102
%Y Cf. A105027.
%K nonn,base
%O 0,3
%A _John W. Layman_, Apr 07 2005