login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105058 Expansion of g.f. (1+8*x-x^2)/((1+x)*(1-6*x+x^2)). 1
1, 13, 69, 409, 2377, 13861, 80781, 470833, 2744209, 15994429, 93222357, 543339721, 3166815961, 18457556053, 107578520349, 627013566049, 3654502875937, 21300003689581, 124145519261541, 723573111879673 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating the squares of the numerators of continued fraction convergents to sqrt(2) to the squares of the denominators of continued fraction convergents to sqrt(2) (Pell numbers).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,5,-1)

FORMULA

a(n) = 2 * A001109(n+1) - (-1)^n.

G.f.: G(0)/(1-3*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013

From G. C. Greubel, Aug 21 2022: (Start)

a(n) = A000129(2*n+2) - (-1)^n.

E.g.f.: exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (3/sqrt(2))*sinh(2*sqrt(2)*x)) - exp(-x). (End)

MATHEMATICA

CoefficientList[ Series[(1+8x-x^2)/((1+x)(1-6x+x^2)), {x, 0, 30}], x] (* Robert G. Wilson v, Apr 06 2005 *)

LinearRecurrence[{5, 5, -1}, {1, 13, 69}, 30] (* Harvey P. Dale, Jun 03 2017 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code:

1dia[J]tesseq[ - .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e ]. Identity used: dia[I]tes + dia[J]tes + dia[K]tes = jes + fam + 3tes.

(Magma) [Evaluate(DicksonSecond(2*n+1, -1), 2) -(-1)^n: n in [0..30]]; // G. C. Greubel, Aug 21 2022

(SageMath) [lucas_number1(2*n+2, 2, -1) -(-1)^n for n in (0..30)] # G. C. Greubel, Aug 21 2022

CROSSREFS

Cf. A000129, A001109, A001333, A046729, A077444.

Cf. A077445, A079291, A082639, A084158, A090390.

Sequence in context: A137188 A055338 A055880 * A146469 A146381 A085461

Adjacent sequences: A105055 A105056 A105057 * A105059 A105060 A105061

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Apr 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 10:23 EST 2022. Contains 358586 sequences. (Running on oeis4.)