OFFSET
0,6
COMMENTS
A transformation of the Fibonacci numbers A000045 by the Riordan array (1/sqrt(1+4*x^2), (sqrt(1+4*x^2)-1)/(2*x)).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: x/((1-x)*sqrt(1+4*x^2)).
a(n) = Sum_{k=0..n} (sin(Pi*k/2)+cos(Pi*k)/2+1/2)*C(k-1,(k-1)/2)*(1-(-1)^k)/2.
D-finite with recurrence: (n-1)*a(n) = (n-1)*a(n-1) - 4*(n-2)*a(n-2) + 4*(n-2)*a(n-3). - R. J. Mathar, Feb 20 2015
MATHEMATICA
CoefficientList[Series[x/((1-x)*Sqrt[1+4*x^2]), {x, 0, 40}], x] (* G. C. Greubel, Jan 01 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*Sqrt(1+4*x^2)) )); // G. C. Greubel, Jan 01 2023
(SageMath)
def A104551_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x/((1-x)*sqrt(1+4*x^2)) ).list()
A104551_list(40) # G. C. Greubel, Jan 01 2023
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 14 2005
STATUS
approved