%I
%S 1,0,1,0,0,1,0,2,0,1,0,0,2,0,2,0,0,1,0,3,0,2,0,0,2,0,3,0,1,0,0,3,0,3,
%T 0,0,2,0,4,0,2,0,0,3,0,3,0,0,1,0,4,0,3,0,0,3,0,5,0,2,0,0,4,0,4,0,0,2,
%U 0,5,0,3,0,0,3,0,4,0,1,0,0,4,0,4,0,0,3,0,6,0,3,0,0,5,0,5,0,0,2,0,6,0,4,0,0
%N Number of representations of n as a sum of distinct elements of the Fibonaccitype sequence beginning 2, 5, 7, 12, 19, 31, 50, 81, ....
%H Alois P. Heinz, <a href="/A104451/b104451.txt">Table of n, a(n) for n = 0..16114</a>
%H J. Berstel, <a href="http://wwwigm.univmlv.fr/~berstel/Articles/2001ExerciceAldo.pdf">An Exercise on Fibonacci Representations</a>, RAIRO/Informatique Theorique, Vol. 35, No 6, 2001, pp. 491498, in the issue dedicated to Aldo De Luca on the occasion of his 60th anniversary.
%H D. A. Klarner, Representations of N as a sum of distinct elements from special sequences, <a href="http://www.fq.math.ca/Scanned/44/klarnera.pdf">part 1</a>, <a href="http://www.fq.math.ca/Scanned/44/klarnerb.pdf">part 2</a>, Fib. Quart., 4 (1966), 289306 and 322.
%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/seqvis.html">Ron Knott's Sequence Visualiser</a>.
%Y Cf. A001060.
%K nonn,look
%O 0,8
%A _Casey Mongoven_, Mar 08 2005
%E Corrected a(0)=1 by _Alois P. Heinz_, Sep 16 2015
