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5.5 Kalmár’s Composition Constant

An additive composition of an integer n is a sequence x1, x2, . . . , xk of integers (for
some k ≥ 1) such that

n = x1 + x2 + · · · + xk, x j ≥ 1 for all 1 ≤ j ≤ k.
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A multiplicative composition of n is the same except

n = x1x2 · · · xk, x j ≥ 2 for all 1 ≤ j ≤ k.

The number a(n) of additive compositions of n is trivially 2n−1. The number m(n) of
multiplicative compositions does not possess a closed-form expression, but asymptot-
ically satisfies

N∑
n=1

m(n) ∼ −1

ρζ ′(ρ)
N ρ = (0.3181736521 . . .) · N ρ,

where ρ = 1.7286472389 . . . is the unique solution of ζ (x) = 2 with x > 1 and ζ (x)
is Riemann’s zeta function [1.6]. This result was first deduced by Kalmár [1, 2] and
refined in [3–8].

An additive partition of an integer n is a sequence x1, x2, . . . , xk of integers (for
some k ≥ 1) such that

n = x1 + x2 + · · · + xk, 1 ≤ x1 ≤ x2 ≤ · · · ≤ xk .

Partitions naturally represent equivalence classes of compositions under sorting. The
number A(n) of additive partitions of n is mentioned in [1.4.2], while the number M(n)
of multiplicative partitions asymptotically satisfies [9, 10]

N∑
n=1

M(n) ∼ 1

2
√

π
N exp

(
2
√

ln(N )
)

ln(N )−
3
4 .

Thus far we have dealt with unrestricted compositions and partitions. Of many
possible variations, let us focus on the case in which each x j is restricted to be a prime
number. For example, the number Mp(n) of prime multiplicative partitions is trivially
1 for n ≥ 2. The number ap(n) of prime additive compositions is [11]

ap(n) ∼ 1

ξ f ′(ξ )

(
1

ξ

)n

= (0.3036552633 . . .) · (1.4762287836 . . .)n,

where ξ = 0.6774017761 . . . is the unique solution of the equation

f (x) =
∑

p

x p = 1, x > 0,

and the sum is over all primes p. The number mp(n) of prime multiplicative compo-
sitions satisfies [12]

N∑
n=1

mp(n) ∼ −1

ηg′(η)
N−η = (0.4127732370 . . .) · N−η,

where η = −1.3994333287 . . . is the unique solution of the equation

g(y) =
∑

p

py = 1, y < 0.

Not much is known about the number Ap(n) of prime additive partitions [13–16]
except that Ap(n + 1) > Ap(n) for n ≥ 8.
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Here is a related, somewhat artificial topic. Let pn be the nth prime, with p1 = 2,
and define formal series

P(z) = 1 +
∞∑

n=1

pnzn, Q(z) = 1

P(z)
=

∞∑
n=0

qnzn.

Some people may be surprised to learn that the coefficients qn obey the following
asymptotics [17]:

qn ∼ 1

θ P ′(θ)

(
1

θ

)n

= (−0.6223065745 . . .) · (−1.4560749485 . . .)n.

where θ = −0.6867778344 . . . is the unique zero of P(z) inside the disk |z| < 3/4.
By way of contrast, pn ∼ n ln(n) by the Prime Number Theorem. In a similar spirit,
consider the coefficients ck of the (n − 1)st degree polynomial fit

c0 + c1(x − 1) + c2(x − 1)(x − 2) + · · · + cn−1(x − 1)(x − 2)(x − 3) · · · (x − n + 1)

to the dataset [18]

(1, 2), (2, 3), (3, 5), (4, 7), (5, 11), (6, 13), . . . , (n, pn).

In the limit as n → ∞, the sum
∑n−1

k=0 ck converges to 3.4070691656 . . . .

Let us return to the counting of compositions and partitions, and merely mention
variations in which each x j is restricted to be square-free [12] or where the xs must be
distinct [8]. Also, compositions/partitions x1, x2, . . . , xk and y1, y2, . . . , yl of n are said
to be independent if proper subsequence sums/products of xs and ys never coincide.
How many such pairs are there (as a function of n)? See [19] for an asymptotic answer.

Cameron & Erdös [20] pointed out that the number of sequences 1 ≤ z1 < z2 <

· · · < zk = n for which zi |z j whenever i < j is 2m(n). The factor 2 arises because
we can choose whether or not to include 1 in the sequence. What can be said
about the number c(n) of sequences 1 ≤ w1 < w2 < · · · < wk ≤ n for which wi 	 |w j

whenever i 	= j? It is conjectured that limn→∞ c(n)1/n exists, and it is known that
1.55967n ≤ c(n) ≤ 1.59n for sufficiently large n. For more about such sequences,
known as primitive sequences, see [2.27].

Finally, define h(n) to be the number of ways to express 1 as a sum of n + 1 elements
of the set {2−i : i ≥ 0}, where repetitions are allowed and order is immaterial. Flajolet
& Prodinger [21] demonstrated that

h(n) ∼ (0.2545055235 . . .)κn,

where κ = 1.7941471875 . . . is the reciprocal of the smallest positive root x of the
equation

∞∑
j=1

(−1) j+1 x2 j+1−2− j

(1 − x)(1 − x3)(1 − x7) · · · (1 − x2 j −1)
− 1 = 0.

This is connected to enumerating level number sequences associated with binary trees
[5.6].
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[2] L. Kalmár, Über die mittlere Anzahl Produktdarstellungen der Zahlen, Acta Sci. Math.

(Szeged) 5 (1930-32) 95–107.
[3] E. Hille, A problem in “Factorisatio Numerorum,” Acta Arith. 2 (1936) 136–144.
[4] P. Erdös, On some asymptotic formulas in the theory of the “factorisatio numerorum,”

Annals of Math. 42 (1941) 989–993; MR 3,165b.
[5] P. Erdös, Corrections to two of my papers, Annals of Math. 44 (1943) 647–651; MR 5,172c.
[6] S. Ikehara, On Kalmár’s problem in “Factorisatio Numerorum.” II, Proc. Phys.-Math. Soc.

Japan 23 (1941) 767–774; MR 7,365h.
[7] R. Warlimont, Factorisatio numerorum with constraints, J. Number Theory 45 (1993) 186–

199; MR 94f:11098.
[8] H.-K. Hwang, Distribution of the number of factors in random ordered factorizations of

integers, J. Number Theory 81 (2000) 61–92; MR 2001k:11183.
[9] A. Oppenheim, On an arithmetic function. II, J. London Math. Soc. 2 (1927) 123–130.
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5.6 Otter’s Tree Enumeration Constants

A graph of order n consists of a set of n vertices (points) together with a set of edges
(unordered pairs of distinct points). Note that loops and multiple parallel edges are
automatically disallowed. Two vertices joined by an edge are called adjacent.

A forest is a graph that is acyclic, meaning that there is no sequence of adjacent
vertices v0, v1, . . . , vm such that vi 	= v j for all i < j < m and v0 = vm .

A tree (or free tree) is a forest that is connected, meaning that for any two distinct
vertices u and w, there is a sequence of adjacent vertices v0, v1, . . . , vm such that
v0 = u and vm = w.

Two trees σ and τ are isomorphic if there is a one-to-one map from the vertices
of σ to the vertices of τ that preserves adjacency (see Figure 5.2). Diagrams for all
non-isomorphic trees of order < 11 appear in [1]. Applications are given in [2].


