%I #17 May 08 2020 06:08:18
%S 1,1,0,1,1,1,1,1,0,0,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,0,
%T 0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,0,1,0,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1
%N Same as A103582, but read antidiagonals in upward direction.
%C Successive digits of A103581.
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
%t t = Table[ Take[ Flatten[ Table[ Join[ Table[1, {i, n}], Table[0, {i, n}]], {10}]], 15], {n, 15}]; Flatten[ Table[ t[[n - i + 1, i]], {n, 14}, {i, n}]] (* _Robert G. Wilson v_, Mar 24 2005 *)
%Y Cf. A103582, A103581, A103588, A103589.
%K nonn,easy,tabl
%O 0,1
%A _Philippe Deléham_, Mar 24 2005
%E Rechecked by _David Applegate_, Apr 19 2005