%I #20 May 08 2020 06:08:57
%S 1,0,1,1,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,1,1,1,
%T 1,1,1,0,0,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
%U 1,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1
%N Binary array below read by downward antidiagonals.
%C The k-th row has alternating blocks of 2^k 1's followed by 2^k 0's:
%C 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...
%C 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, ...
%C 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, ...
%C 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ...
%C 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, ...
%C 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%C ...
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
%t t = Table[ Take[ Flatten[ Table[ Join[ Table[1, {i, n}], Table[0, {i, n}]], {10}]], 15], {n, 15}]; Flatten[ Table[ t[[i, n - i + 1]], {n, 14}, {i, n}]] (* _Robert G. Wilson v_, Mar 24 2005 *)
%Y Cf. A103583, A103581, A103588, A103589.
%K nonn,easy,tabl
%O 0,1
%A _Philippe Deléham_, Mar 24 2005
%E More terms from _Robert G. Wilson v_ and _Benoit Cloitre_, Mar 24 2005
%E Rechecked by _David Applegate_, Apr 19 2005