%I #13 May 08 2020 06:09:10
%S 1,10,111,1100,11101,111110,1111011,11111000,111111001,1111111010,
%T 11111111111,111111110100,1111111110101,11111111110110,
%U 111111111110011,1111111111110000,11111111111110001,111111111111110010
%N A102371 written in base 2.
%C The number of zeros in the n-th term appears to match A089398. - _Benoit Cloitre_, Mar 24 2005
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
%F a(n) = A007088(A102371(n)). - _Michel Marcus_, May 08 2020
%Y Cf. A007088, A102371, A103583, A103582.
%K nonn,base,easy
%O 1,2
%A _Philippe Deléham_, Mar 23 2005
%E More terms from _Benoit Cloitre_, Mar 24 2005